ПОИСК Статьи Чертежи Таблицы Определение динамической устойчивости из "Управление и стабилизация в аэродинамике " Анализ производных аэродинамических моментов по а или (3 позволяет установить, обладает ли тело тем или иным видом статической устойчивости. Однако для оценки летных качеств движущегося тела недостаточно такого анализа, так как он не дает ответа на вопрос о характере движения тела после прекращения действия возмущения, о величинах параметров, определяющих это движение. [c.37] В самом деле, если известно, например, что производная гпг отрицательна и что, следовательно, центр давления расположен за центром масс, то можно сделать вывод лишь о продольной статической устойчивости. Но нельзя сказать, например, какова будет амплитуда колебаний угла атаки при том или ином значении параметра начального возмущения и каким образом по времени будет происходить ее изменение. На все эти и другие вопросы отвечает теория динамической устойчивости летательного аппарата или устойчивости его движения. Эта теория позволяет, естественно, исследовать не только колебания летательного аппарата, но и общий случай движения аппарата на траектории и устойчивость этого движения. Теория динамической устойчивости использует результаты аэродинамических исследований, полученных на режимах неустановившегося обтекания, при котором на тело будут действовать в отличие от статических условий дополнительные аэродинамические нагрузки, зависящие от времени. [c.37] Понятие динамической устойчивости связано с двумя видами движения летательного аппарата — невозмущенным (основным) и возмущенным. Движение называют невозмущенным (основным), если оно происходит по определенной траектории со скоростью, изменяющейся в соответствии с каким-либо заданным законом, при стандартных значениях параметров атмосферы и известных начальных параметрах этого движения. Эта теоретическая траектория, описываемая конкретными уравнениями полета с номинальными параметрами аппарата и системы управления, также называется невозмущенной. Благодаря воздействию случайных возмущающих факторов (порывы ветра, помехи в системе управления, несоответствие начальных условий заданным, отличие реальных параметров аппарата и системы управления от номинальных, отклонение действительных параметров атмосферы от стандартных), а также возмущений от отклонения рулей основное движение может нарушиться. После прекращения этого воздействия тело будет двигаться, по крайней мере, в течение некоторого времени по иному закону, отличному от первоначального. Новое движение будет возмущенным. [c.37] Да = а —а ,. ..) последующие отклонения А Есо=Еоо—Да=а— — а не будут превышать некоторых заданных величин, то движение будет устойчивым. Если эти отклонения неограниченно увеличиваются, то движение неустойчиво. Может наблюдаться и такой полет, при котором отклонения не затухают и не возрастают в этом случае имеет место нейтральность в отношении устойчивости движения. [c.38] Такое определение устойчивости связано с исследованием реакции летательного аппарата на возмущающие воздействия при условии, что эти воздействия сообщают параметрам невозмущенного движения некоторые начальные отклонения, а последующее движение рассматривается уже при отсутствии возмущений. При таком движении органы управления остаются закрепленными. Этот вид возмущенного движения, вызванный начальными возмущениями параметров, называется собственным или свободным. В такой постановке собственное движение летательного аппарата может рассматриваться условно как некоторое новое невозмущенное движение. [c.38] Если интенсивность воздействия случайных факторов невелика, то возмущенная траектория мало отличается от невозмущенной. Это позволяет использовать уравнения, линеаризованные относительно малых отклонений возмущенных параметров от невозмущенных (метод малых возмущений). Рассмотрим вид этих уравнений и их общие решения, с тем чтобы выявить роль и место аэродинамических характеристик (производных устойчивости) в обеспечении устойчивости движения летательного аппарата. [c.39] Вернуться к основной статье