Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Для определения множества преобразований симметрии, отвечающих подобным пространственным группам, необходимо перемножить преобразования симметрии точечных и трансляционных групп. При этом могут появиться и дополнительные элементы симметрии. Анализ показал, что число полученных таким образом пространственных групп равно 73. При получении этих групп было также учтено, что в тетрагональной, гексагональной и ромбической системах возможно несколько способов совместимого взаимного расположения элементов точечной и трансляционной симметрий.

ПОИСК



Пространственные (федоровские) группы

из "Введение в физику твердого тела "

Для определения множества преобразований симметрии, отвечающих подобным пространственным группам, необходимо перемножить преобразования симметрии точечных и трансляционных групп. При этом могут появиться и дополнительные элементы симметрии. Анализ показал, что число полученных таким образом пространственных групп равно 73. При получении этих групп было также учтено, что в тетрагональной, гексагональной и ромбической системах возможно несколько способов совместимого взаимного расположения элементов точечной и трансляционной симметрий. [c.151]
Винтовые оси симметрии — совокупности поворотной оси и трансляционного переноса ла долю периода. Они обозначаются цифрой (порядком оси) с индексом. Частное от деления индекса на порядок оси равно доле трансляции, а которую происходит перенос вдоль винтовой оси. [c.152]
Пространственные группы симметрии определяют правильные системы точек, которые образуются из одной точки, находящейся в общем положении, т. е. не расположенной на элементе симметрии, приложением к ней всех преобразований симметрии данной группы. Точки n Tj эквивалентные по точечной группе, являются вершинами многогранника, называемого изогоном. [c.153]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте