Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Геометрическая теория деформации (Гл. I) и статическая теория напряжений,(Гл. II) рассмотрены при предположении о деформируемом теле лишь как о сплошной среде. Поэтому эти теории и полученные зависимости справедливы для любой сплошной среды, которая может быть и газообразной, и жидкой, и упругим или упругопластическим твердым телом.

ПОИСК



Соотношения между компонентами тензора деформации и компонентами тензора напряжений

из "Теория упругости "

Геометрическая теория деформации (Гл. I) и статическая теория напряжений,(Гл. II) рассмотрены при предположении о деформируемом теле лишь как о сплошной среде. Поэтому эти теории и полученные зависимости справедливы для любой сплошной среды, которая может быть и газообразной, и жидкой, и упругим или упругопластическим твердым телом. [c.49]
Из соображений физического характера ясно, что деформированное состояние тела (сплошной среды) и его напряженное состояние, вызванные внешними силами или тепловым воздействием, взаимно обусловлены, т. е. должны иметь место некоторые соотношения между компонентами oi] тензора напряжений и компонентами гц тензора деформации. [c.49]
Эти соотношения необходимы и с математической точки зрения. Действительно, деформированное состояние тела описывается тремя непрерывными функциями Uj Xh), через которые на основании зависимостей Коши (1.40) определяются компоненты тензора деформации, а напряженное состояние тела определяется шестью независимыми компонентами ои тензора напряжений. Однако для определения этих девяти функций щ Xk) и ffjj (Xk)) в зависимости от внешнего воздействия на тело пока что имеем лишь систему трех дифференциальных уравнений равновесия (2.26), решение которых должно удовлетворять граничным условиям, например (2.28). Такая система уравнений называется ле-замкнутой, так как не позволяет найти функции u хи) и Oij (л й,), каковы бы ни были для них граничные условия. Это вполне понятно, го-скольку не учтены физические свойства рассматриваемой сплошной среды. [c.49]
Таким образом, для математической формулировки задачи описания напряженно-деформированного состояния тела необходимо иметь по крайней мере еш,е шесть зависимостей между перечисленными девятью функциями. Очевидно, что недостающие зависимости между функциями должны отражать физическую сторону данной задачи для конкретной модели сплошной среды, наделенной определенными свойствами ее механического поведения. Эти зависимости называются законом поведения или законом состояния рассматриваемой сплошной среды.Установление закона состояния приводит к замкнутой системе уравнений, которая позволяет определить реализуемое в теле поле напряжений и поле перемещений при заданном внешнем воздействии на тело. [c.49]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте