ПОИСК Статьи Чертежи Таблицы Совершенный газ с постоянными теплоемкостями из "Лекции по газовой динамике " Для получения замкнутой системы уравнений нужно определить все входящие в нее выражения. Общие правила выбора этих выражений сформулированы в предыдущей лекции. Ниже будут рассмотрены некоторые простейшие модели газовой среды. На их примере будут показаны конкретные приемы применения общих правил. [c.27] В данном курсе лекций основное внимание уделяется влиянию внутренней молекулярной структуры газа на его движение. [c.27] Наиболее распространенной моделью среды в газовой динамике является однородный невязкий нетеплопроводный газ. Из-за больших скоростей движения газа вязкость и теплопроводность в основном потоке оказываются несущественными и их часто можно отбросить. Таким образом, тензор вязких напряжений а и вектор немеханического переноса тепла q будем считать тождественно равными нулю. Диффузия в однородном газе также отсутствует. [c.27] Отметим здесь, что термин идеальный газ или идеальная жидкость часто применяется в механике сплошной среды для обозначения невязкой среды. Нужно сказать, что здесь нет никакой связи с использованным выше понятием идеального газа (один и тот же термин используют для обозначения двух разных понятий). [c.28] Иначе говоря, Су означает количество теплоты, которое нужно подвести к совершенному газу, чтобы нагреть его на 1 градус при постоянном объеме. [c.29] Формула (4.11) показывает, что Ср имеет смысл количества теплоты, которое нужно подвести к совершенному газу, чтобы нагреть его на 1 градус при постоянном давлении. [c.30] Легко проверить, что задание одной только функции (4.16) полностью определяет модель совершенного газа с постоянными теплоемкостями. [c.30] Из уравнения притока тепла для идеального газа легко получить, что свойство (4.19) для непрерывных движений соответствует адиабатическому движению, когда divq = О, т.е. немеханический приток тепла в жидкую частицу отсутствует. [c.31] Вернуться к основной статье