ПОИСК Статьи Чертежи Таблицы Ковариантное дифференцирование из "Аналитическая механика " Предметом рассмотрения в механике и математической физике являются инвариантные величины они не зависят от выбора координатного базиса и определяются собственными свойствами изучаем010 объекта. Инварианты могут быть скалярами (энергия, работа, масса, температура), векторами (скорость, ускорение, сила), тензорами (тензор инерции в точке тела, тензоры деформаций и напряжений в сплошной среде), а также их функциями—диадное, скалярное и векторное произведения векторов, произведение тензора на вектор и т. д. [c.787] Проведение вычислений с векторными и тензорными величинами требует введения координатного базиса и составляющих той или иной природы (контравариантных, ковариантных, смешанных) по основным векторам этого базиса. Изменения инварианта при.переходе отточки к точке или с течением времени обусловлены лишь свойствами этого инварианта иначе обстоит дело, ьогда рассматриваются составляющие — их изменения обусловлены еще и изменением величин и направлений основных векторов взятого координатного базиса. Пусть, например, не зависят от координат их частные производные по координатам равны нулю, но было бы грубой ошибкой считать, что в этом случае векюр а не испытывает изменений при переходе от точки к точке. Верно и обратное при постоянном а составляющие (или а ) не сохраняют постоянных значений. Задачей последующего является введение таких характеристик изменяемости составляющих векторов и тензоров, в которых учитывались бы как изменения самих этих функций, так и координатного базиса, к которому они отнесены. Это достигается введением операции ковариантного (или абсолютного) дифференцирования. [c.787] Вычисление легко обобщить на тензоры любой кратности. Ограничимся здесь, как и ранее, тензорами второго ранга. Имеем, используя диадное представление тензора. [c.788] Частные производные от и по д не являются составляющими тензора. [c.790] Вернуться к основной статье