ПОИСК Статьи Чертежи Таблицы Уравнения движения идеальной жидкости из "Прикладная газовая динамика. Ч.1 " Анализ уравнений движения Навье — Стокса, проделанный Прандтлем еще в 1904 г., показал, что в случае жидкости малой вязкости (вода, воздух и т. п.) при достаточно больших значениях числа Рейнольдса влияние вязкости сказывается лишь в тонком слое, прилегающем к поверхности обтекаемого тела,— пограничном слое ). Вне этого слоя роль вязкостных сил оказывается настолько малой, что соответствующими членами в уравнениях Навье — Стокса (26) или (27) можно пренебречь. [c.90] Подробнее о пограничном слое см. гл. VI. [c.90] В случае, если жидкость является идеальной и несжимаемой (р = onst), задача интегрирования уравнении движения (81) сильно упрощается. На это указал впервые еще Эйлер, чье имя носят уравнения движения (81). Аналитические методы решения уравнений движения идеальной жидкости получили большое развитие, и в настоящее время изучено множество случаев обтекания тел (крылья, решетки крыльев, тела осесимметричной формы, всевозможные каналы и т. п.). Из совокупности работ этого направления образовалось важное направление современной механики — классическая гидродинамика. [c.91] В сочетании с теорией пограничного слоя гидродинамика идеальной жидкости стала мощным средством решения задач аэродинамики самолета, гидродинамики корабля, механики движения жидкости по трубам и многих других. [c.91] Особенно простой вид имеет решение уравнений движения (81) в случае безвихревого движения идеальной жидкости, когда завихренность равна нулю (см. выражения (2)), т. е. [c.92] Из условий (86) следует, что существует некоторая функция ф, частные производные которой по координатам х, у, z равны соответствующим компонентам скорости, т. е. [c.92] Функцию ф принято называть потенциалом скорости, а безвихревое движение — потенциальным. [c.92] Важной особенностью интеграла Лагранжа является то, что он справедлив во всем пространстве, заполненном жидкостью. [c.94] Если потенциала скорости не существует, т. е. движение является вихревым, то уравнения движения идеальной жидкости (81) также можно проинтегрировать, но только вдоль линии тока и при условии установившегося движения. [c.94] Напомним еще раз, что в отличие от интеграла Лагранжа интеграл Бернулли справедлив только вдоль линии тока, т. е. значение константы в правой части (91) для разных линий тока неодинаково. Лишь в случае установившегося потенциального течения интеграл Бернулли переходит в интеграл Лагранжа и делается пригодным для любой точки пространства. [c.95] Вернуться к основной статье