ПОИСК Статьи Чертежи Таблицы Принцип Гамильтона в форме Пуанкаре из "Курс теоретической механики Издание 2 " Последнее условие, очевидно, должно иметь место и для всех траекторий сравнения. [c.467] Геометрическое представление движения в пространстве 2к измерений впервые предложил американский физик Д. Гиббс (1839—1903), который и ввел понятие фазового пространства, считая, что ряд являются ортогональными координатами 2й-мерного евклидова пространства. Использование фазового пространства вносит ряд преимуществ при изучении движения механических систем. Так, например, на многие вопросы механики нельзя дать удовлетворительный ответ, рассматривая одно частное решение системы, соответствующее определенным начальным данным. Необходимо знать все множество траекторий. Движение может начинаться из любой точки /г-мерного пространства в произвольном направлении. В фазовом пространстве задание одной точки Р однозначно определяет всю траекторию. Для полного решения канонических уравнений Гамильтона необходимо знать величины 7,- и р как функции времени 1 я 2к постоянных интегрирования, которые можно интерпретировать как значения 2к координат фазового пространства в момент = 0. Рассматривая 2к координат как различные измерения в фазовом пространстве, можно изобразить полное решение канонических уравнений в упорядоченном виде без пересечений в виде бесконечного множества кривых, заполняющих 2 - -1-мерное пространство (пересечение кривых означало бы, что в одной и той же точке возможны две касательные к кривой, а канонические уравнения при отсутствии особых точек определяют единственную касательную). [c.468] Гидродинамическая картина полностью переносится на фазовое пространство, но вместо трех координат х, у, г здесь имеется 2к координат д, р. [c.469] Вернуться к основной статье