Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Если заряженная частица движется в плотной (конденсированной) среде, то, проходя мимо различных ядер этой среды в пределах р рмакс она будет рассеиваться каждым из них на некоторый угол 6, среднее значение которого тем больше, чем меньше масса движущейся частицы (при данных z и v частиц). Этот процесс последовательных рассеяний частицы ядрами, мимо которых она движется, называется процессом многократного кулоновского рассеяния. Разумеется, проследить за всеми деталями этого процесса экспериментально невозможно. Однако можно измерить некоторое результирующее отклонение от первоначального направления частицы (угол многократного рассеяния), которое она приобретает, пройдя в среде заданный путь х, т. е. испытав некоторое определенное количество п актов рассеяния. Из предыдущего ясно, что угол многократного рассеяния тем больше, чем меньше (при прочих равных условиях) масса частицы. Так, например, след медленного электрона в фотоэмульсии из-за многократного рассеяния имеет существенно извилистый характер, в то время как след протона такой же скорости практически прямолинеен и для обнаружения эффекта многократного рассеяния нужны специальные очень точные измерения. Сильная зависимость величины угла многократного рассеяния от массы частицы может быть использована для ее определения. Для получения соответствующей формулы рассмотрим процесс многократного рассеяния более детально.

ПОИСК



Многократное рассеяние

из "Введение в ядерную физику "

Если заряженная частица движется в плотной (конденсированной) среде, то, проходя мимо различных ядер этой среды в пределах р рмакс она будет рассеиваться каждым из них на некоторый угол 6, среднее значение которого тем больше, чем меньше масса движущейся частицы (при данных z и v частиц). Этот процесс последовательных рассеяний частицы ядрами, мимо которых она движется, называется процессом многократного кулоновского рассеяния. Разумеется, проследить за всеми деталями этого процесса экспериментально невозможно. Однако можно измерить некоторое результирующее отклонение от первоначального направления частицы (угол многократного рассеяния), которое она приобретает, пройдя в среде заданный путь х, т. е. испытав некоторое определенное количество п актов рассеяния. Из предыдущего ясно, что угол многократного рассеяния тем больше, чем меньше (при прочих равных условиях) масса частицы. Так, например, след медленного электрона в фотоэмульсии из-за многократного рассеяния имеет существенно извилистый характер, в то время как след протона такой же скорости практически прямолинеен и для обнаружения эффекта многократного рассеяния нужны специальные очень точные измерения. Сильная зависимость величины угла многократного рассеяния от массы частицы может быть использована для ее определения. Для получения соответствующей формулы рассмотрим процесс многократного рассеяния более детально. [c.229]
Пусть OOi определяет первоначальное направление движения частицы в некоторой среде, а точки О], О2, О3 и т. д.— места последовательных упругих столкновений частицы с первым, вторым, третьим и т. д. ядрами (рис. 77). [c.230]
Здесь а измеряется в градусах, х —в микронах, а (р с) — в мегаэлектронвольтах. Пересчет на другую среду может быть легко сделан, если учесть зависимость а от 2 и п, даваемую выражением (19.47). [c.232]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте