ПОИСК Статьи Чертежи Таблицы Возбуждение свечения нагреванием из "Оптика " Квантовая теория позволяет дать ясное истолкование многочисленным опытам по возбуждению свечения в парах, вводимых в пламя газовой горелки. [c.742] Введем в бесцветное пламя бунзеновской горелки пары какого-либо металла пропитаем, например, кусочек сбеста раствором хлористого стронция и внесем такой фитиль в пламя горелки. Пламя окрасится в красный цвет, и наблюдение при помощи спектроскопа обнаружит присутствие линии стронция с к = 689,2 нм. Ни линии хлора, ни другие линии стронция при этом не обнаруживаются. Вообще говоря, в пламени можно возбудить лишь сравнительно немногие линии некоторых металлов. Объяснение этого следует искать в тех количествах энергии, которые могут сообщаться атому при столкновении с частицами, составляющими пламя (атомами, молекулами, ионами, электронами). Пламя бунзеновской горелки характеризуется температурой около 2000 К- Средняя кинетическая энергия частиц в этих условиях невелика и составляет всего около 0,20 эВ. В пламени с темпер атурой 2000 К присутствует некоторое количество частиц с кинетической энергией, значительно превышающей среднюю энергию, ибо скорости распределены между частицами хаотически. Однако по закону распределения скоростей (закон Максвелла) число частиц, обладающих скоростями, значительно большими средней, быстро падает по мере удаления от средней ве и-чины. Поэтому число частиц, обладающих кинетической энергией больше 2—3 эВ, настолько незначительно, что практически трудно ожидать свечения атомов, потенциал возбуждения которых превышает эти величины. [c.742] Представляет интерес отметить, что если между атомами, молекулами, ионами и электронами столкновения происходят достаточно часто, то между ними устанавливается тепловое равновесие, и распределение скоростей всех частиц можно найти по закону Максвелла, причем средние кинетические энергии частиц разных сортов будут одинаковы. Это, по-видимому, имеет место, когда дуговой разряд происходит при атмосферном давлении или при несколько более низком. Но если давление в дуге достаточно мало, то, как показывает опыт, равновесие между атомами и электронами может и не наступить, хотя равновесие между атомами, равно как и равновесие между электронами, может установиться ). Таким образом, можно говорить об атомной температуре (максвелловское распределение скоростей атомов, соответствующее температуре Та) и об электронной температуре (максвелловское распределение скоростей электронов, соответствующее температуре Т ), но неравноГд, а значительно выше (Т Тд). [c.743] В таких условиях возбуждение атомов может происходить за счет столкновений с электронами, т. е. условие возбуждения определяет температура электронов. В тех же случаях, когда тепловое равновесие имеет место (горелка, столб дуги при атмосферном давлении), возбуждение свечения можно определить по температуре газа. [c.743] Вернуться к основной статье