ПОИСК Статьи Чертежи Таблицы Природа рентгеновских лучей из "Оптика " Самой замечательной особенностью рентгеновского излучения является, как уже упоминалось, его способность проникать через непрозрачные для обычного света вещества. Уже сам Рентген широко исследовал эту способность рентгеновских лучей, наблюдая свечение флуоресцирующего экрана, помещенного на пути лучей за слоём исследуемого вещества. Рентген обнаружил, что поглощение рентгеновского излучения в каком-либо веществе не связано с его прозрачностью для обычных лучей. Так, например, черная бумага или картон поглощают ренгеновские лучи значительно слабее, чем стекло такой же толщины, особенно если оно содержит свинцовые соли. [c.404] Рентген установил, что способность вещества поглощать рентгеновские лучи тем больше, чем больше его плотность, так что свинцовые пластинки ослабляют поток рентгеновского излучения гораздо сильнее, чем пластинки той же толщины, сделанные из алюминия. Существенно для поглощения наличие в поглощающем веществе атомов тяжелых элементов, независимо от того, в какие соединения они входят. Так, например, тонкий слой свинцовых белил или стекло со свинцовыми солями сильно поглощают рентгеновские лучи именно благодаря наличию в их составе тяжелых атомов свинца. [c.405] В тех же исследованиях Рентген установил и другой крайне важный факт, использованный им для характеристики применяемых в том или ином случае лучей. Было обнаружено, что поглощение рентгеновских лучей одним и тем же веществом различно в зависимости от условий их получения. Лучи, сильно поглощаемые, были названы мягкими, лучи, слабо поглощаемые, — жесткими. Таким образом, способность лучей проникать сквозь вещество характеризует степень их жесткости. [c.405] Сравнение жесткости лучей производится обычно путем определения их способности поглощаться в каком-либо определенном веществе (например, в алюминии). Но и во всех других веществах более жесткие лучи поглощаются слабее (исключение составляют некоторые явления избирательного поглощения, о которых речь будет ниже). [c.405] Жесткость рентгеновских лучей может быть самой различной. Применяются лучи, для которых О в алюминии варьирует от 0,0006 до 6 см, т. е. изменяется в 10 000 раз. [c.406] Все оценки способности рентгеновских лучей поглощаться и их жесткости очень затрудняются тем, что из трубки выходят очень неоднородные рентгеновские лучи, т. е. смесь лучей различной жесткости. Пропуская их через поглощающее вещество, мы задерживаем более мягкие лучи, получая таким образом более однородный пучок. Этот метод фильтрования довольно груб и не обеспечивает получения строго однородных монохроматических лучей. В настоящее время мы располагаем приемами монохроматизации, подобными применяемым в оптике обычных длин волн, т. е. методами, при использовании которых испускается почти монохроматическое рентгеновское излучение, подвергающееся дальнейшей монохроматизации при помощи дифракции. Таким образом получаются лучи, не уступающие по монохроматичности световым лучам, и для них коэффициент поглощения имеет совершенно определенный физический смысл. Для таких монохроматических лучей он зависит от плотности р поглощающего вещества и грубо приближенно может считаться пропорциональным плотности. Более точно поглощение определяется числом атомов поглощающего вещества на единице толщины слоя. При переходе же от одних атомов к другим поглощение быстро растет с увеличением атомного веса, правильнее, атомного номера Z, будучи пропорционально кубу атомного номера. [c.406] Уже сам Рентген, установивший понятие жесткости рентгеновских лучей, показал, что она определяется режимом рентгеновской трубки чем больше разность потенциалов между анодом и катодом, ускоряющая электроны, т. е. чем больше скорость электронов, бомбардирующих анод, тем жестче рентгеновские лучи. [c.406] Хотя уже первые исследователи рентгеновских лучей (Стокс, Д. А. Гольдгаммер и отчасти сам Рентген )) высказывали мысль, что рентгеновские лучи суть электромагнитные волны, возникающие при торможении быстрых электронов, ударяющихся об анод, однако ряд свойств рентгеновского излучения трудно было примирить с его волновой природой. Вообще исследование большинства его свойств давалось с большим трудом. Долго не удавалось наблюдать отражение и преломление рентгеновских лучей при переходе из одной среды в другую. Рентген смог только обнаружить слабые следы рассеяния рентгеновских лучей, что, конечно, легко было объяснить и исходя из предположения о корпускулярной их природе. [c.407] Особенным затруднением для гипотезы волновой природы рентгеновских лучей служили неудачи опытов, проделанных Рентгеном и рядом других исследователей с целью обнаружить интерференцию и дифракцию рентгеновских лучей. Лишь значительно позже (около 1910 г.) выяснилось, что длина волны рентгеновского излучения значительно меньше, чем у видимого света и ультрафиолетовых лучей, и поэтому первые опыты по осуществлению интерференции были заранее обречены на неудачу. [c.407] Надо отметить, что уже после опубликования первых работ Рентгена, а именно в 1897 г., Стокс высказал в общем правильные в рамках современных представлений взгляды на природу рентгеновских лучей. Стокс считал,что это — короткие электромагнитные импульсы, возникающие при резком изменении скорости электронов, ударяющихся об анод. Такое изменение скорости движущегося заряда можно рассматривать как ослабление электрического тока, каковым является летящий электрон оно сопровождается ослаблением связанного с движущимся электроном магнитного поля. Изменение магнитного поля индуцирует в окружающем пространстве переменное электрическое поле, которое в свою очередь вызывает переменный ток смещения, и т. д. Возникает, согласно представлениям Максвелла, электромагнитный импульс, который распространяется в пространстве со скоростью света. [c.407] Недостаток ясности в этих представлениях и, главное, недостаток опытных данных привели к возникновению и другого взгляда на рентгеновские лучи, к которому вскоре примкнул и сам Рентген. [c.407] Окончательное выяснение природы рентгеновских лучей произошло в 1912 г., когда по идееМ. Лауэ удалось осуществить с несомненностью явление дифракции рентгеновских лучей. [c.407] Вернуться к основной статье