ПОИСК Статьи Чертежи Таблицы Детонация из "Теоретическая физика. Т.4. Гидродинамика " В описанном выше режиме медленного горения его распространение по газу обусловливается нагреванием, проис.ходящим путем непосредственной передачи тепла от горящего к еще ме воспламенившемуся газу. Наряду с таким возможен и совсем иной механизм распространения горения, связанный с ударными волнами. Ударная волна вызывает при своем прохождении нагревание газа — температура газа позади волны выше, чем впереди нее. Если интенсивность ударной волны достаточно велпка, то вызываемое ею повышение температуры может оказаться достаточным для того, чтобы в газе могло начаться горение. Ударная волна при своем движении будет тогда как бы поджигать газовую смесь, т. е. горение будет распространяться со скоростью, равной скорости волны, — гораздо быстрее, чем при обычном горении. Такой механизм распространения горения называют детонацией. [c.670] в течение некоторого характерного для кинетики данной реакции времени т ). Поэтому ясно, что за ударной волной будет следовать передвигающийся вместе с нею слой, в котором и происходит горение, причем толщина этого слоя равна произведению скорости распространения волны на время т. Существенно, что она не зависит от размеров тел, фигурирующих в данной конкретной задаче. Поэтому при достаточно больших характерных размерах задачи можно рассматривать ударную волну вместе со следующей за ней областью горения как одну поверхность разрыва, отделяющую сгоревший газ от несгорев-шого. О такой поверхности разрыва мы будем говорить как о детонационной волне. [c.671] Таким образом, мы приходим к важному результату, что детонации отвечает не вся кривая детонационной адиабаты, а лишь ее верхняя часть, лежащая над точкой О, в которой адиабата касается прямой, проведенной из начальной точки а. [c.673] В этом проще всего можно убедиться непосредственно из рис. 132. Скорость звука С графически определяется наклоном касательной к ударной адиабате газа 1 (пунктирная кривая) в точке а. Скорость же v определяется наклоном хорды ас. Поскольку все рассматриваемые хорды идут круче указанной касательной, то всегда ui с,. Перемещаясь со сверхзвуковой скоростью, детонационная волна, как и ударная волна, никак не влияет на состояние находящегося перед нею газа. Скорость vi перемещения волны относительно исходного неподвижного газа и есть та скорость, о которой надо говорить как о скорости распространения детонации в горючей смеси. [c.673] Поскольку v V == Oa/V a = /, а Vi V2, то vi Уг- Разность же VI — V2 есть скорость движения продуктов горения относительно несгоревшего газа. Эта разность положительна, т. е. продукты горения двил утся в сторону распространения детонационной волны. [c.674] Если детоиация вызывается ударной волной, возникшей от какого-либо постороннего источника и падающей на горючую смесь, то такой детонации может соответствовать любая точка, лежащая на верхней части детонационной адиабаты. В особен пости интересна, однако, детонация, возникающая самопроизвольно, в результате самого процесса горения. В следующем параграфе мы увидим, что в ряде важных случаев такая детонация непременно должна соответствовать точке Чепмеиа — Жуге, так что скорость детонационной волны относительно остающихся непосредственно за ней продуктов горения раина как раз скорости звука, а скорость относительно исходного газа vi = jVt имеет наименьшее возможное значение ). [c.674] Подставляя теперь эти выражения в уравнение (129,6) и вводя вместо потока / скорость vi = jVi, получаем после простого приведения следующее биквадратное уравнение для v . [c.675] Два знака перед корнем соответствуют и данном случае тому, что из точки а можно провести две касательные к детонационной адиабате — одну вверх, как это изображено на рисунке, а другую вниз. Интересующая нас верхняя касательная является более крутой и соответственно этому mii. выбираем знак плюс перед корнем. [c.675] Эта формула определяет скорость распространения детонации по температуре Т исходной газовой смеси. [c.676] Вместе с (129,9) они определят отношения давлений и плотностей продуктов горения и исходного вещества по температуре Т. [c.676] Вернуться к основной статье