ПОИСК Статьи Чертежи Таблицы Образование разрывов в звуковой волне из "Теоретическая физика. Т.4. Гидродинамика " Плоская бегущая звуковая волна как точное решение уравнений движения тоже представляет собой простую волну. Мы можем воспользоваться полученными в предыдущем параграфе общими результатами для того, чтобы выяснить некоторые свойства звуковых волн малой амплитуды во втором приближении (понимая под первым приближением то, которое соответствует обычному линейному волновому уравнению). [c.535] Прежде всего отметим, что по истечении достаточно долгого времени в звуковой волне на протяжении каждого ее периода должен возникнуть разрыв. Этот эффект приведет затем к весьма сильному затуханию волны, как это было объяснено в 101. Фактически это может относиться, разумеется, лишь к достаточно сильному звуку в противном случае звуковая волна успеет поглотиться благодаря обычному эффекту вязкости и теплопроводности газа раньше, чем в ней успеют развиться эффекты высших порядков по амплитуде. [c.535] Эффект искажения профиля волны проявляется и в другом отношении. Если в некоторый момент времени волна была чисто гармонической, то с течением времени соответственно изменению формы ее профиля она перестанет быть таковой. Движение, однако, останется периодическим с прежним периодом. В разложение этой волны в ряд Фурье войдут теперь наряду с членом с основной частотой также и члены с кратными частотами пш (п — целые числа). Таким образом, искажение профиля по мере распространения звуковой волны можно воспринимать как появление в ней наряду с основным тоном также и обертонов. [c.535] Для политропных газов ==(y + 1)/2, и формула (102,1) совпадает с точной формулой (см. (101,8)) для скорости и. [c.535] Простое вычисление с помощью разложения в ряд показывает, что оба написанных выражения отличаются друг от друга только в членах третьего порядка (при вычислении следует иметь в виду, то изменение энтропии в разрыве есть величина третьего порядка малости, а в простой волне энтропия вообще постоянна). Отсюда следует, что с точностью до членов второго порядка звуковая волна с каждой стороны от образовавшегося в ней разрыва остается простой, причем на самом разрыве будет выполнено надлежащее граничное условие. В следующих же приближениях это уже не будет и.меть места, что связано с появлением отраженных от поверхности разрыва волн. [c.536] Геометрически это означает, что площадь аЬс равна площади de. Этим условием определяется положение разрывп. [c.537] Образование разрывов в звуковой волне представляет собой пример самопроизвольного возникновения ударных волн в отсутствии каких бы то ни было особенностей во внешних условиях движения. Следует подчеркнуть, что хотя ударная волна может самопроизвольно возникнуть в некоторый дискретный момент времени, она не может столь же дискретным образом исчезнуть. Раз возникнув, ударная волна затухает в дальнейшем лишь асимптотически при неограниченном увеличении времени. [c.537] Рассмотрим теперь предельные (на больших расстояниях от источника) свойства ударных волн, образующихся в цилиндрических и сферических звуковых волнах Л. Д. Ландау, 1945). Начнем с цилиндрического случая. [c.539] Искажение профиля цилиндрической волны растет медленнее, чем у плоской волны (где смещение бл растет пропорционально самому проходимому расстоянию х). Но и здесь оно, разумеется, приводит в конце концов к образованию разрывов. Рассмотрим ударные волны, образующиеся в достаточно далеко удалившемся от источника (оси) одиночном цилиндрическом звуковом импульсе. [c.539] В результате возникает профиль изображенного на рис. 84 вида. [c.540] Мы видим, что искажение профиля сферической волны растет с расстоянием лишь логарифмически — гораздо медленнее, чем в плоском и даже цилиндрическом случаях. [c.541] Вернуться к основной статье