ПОИСК Статьи Чертежи Таблицы Самоорганизуемая критичность из "Синергетика конденсированной среды " Касаясь других подходов, отметим, что большинство из них было приложено к наиболее популярной и простой модели sandpile, которая исследована как аналитически [31, 32], так и численно [23-26, 31-36]. Аналитическое представление сводится, как правило, к полевым методам, первый из которых [37] основан на нелинейном уравнении диффузии. Однако, использование однопараметрического подхода не позволяет учесть основную особенность самоорганизующихся систем — самосогласованный характер динамики лавин, обусловленный обратной связью между открытой системой и окружающей средой. Более содержательную картину дает использование двухпараметрической схемы [38, 24-26]. Это достигается с помощью калибровочных полей (типа скорости движения песка и высоты его поверхности), либо материальнь1х полей, сводящихся к числу движущихся песчинок (размеру лавины) и т. д. Использование теории среднего поля показывает, что самоподобный режим динамики сыпучей среды отвечает адиабатическому поведению, при котором характерное время изменения параметра порядка значительно превышает соответствующий масштаб управляющего параметра. Полная картина самоорганизации, изложенная в предыдущем параграфе, требует использования трехпараметрического подхода. [c.50] Сведения, необходимые для использования дробных интефала и производной, а также производной Джексона, собраны в Приложении А. [c.52] Вернуться к основной статье