ПОИСК Статьи Чертежи Таблицы Диаграммное представление интеграла столкновений из "Статистическая механика неравновесных процессов Т.1 " В этой формуле 5-й член есть сумма всех сильно связных 5-частичных диаграмм, имеющих одну свободную линию на левом конце. Вклад 5-го члена пропорционален поэтому формула (3.2.18) дает разложение интеграла столкновений по плотности. Интересно провести сравнение диаграммного представления интеграла столкновений с групповым разложением, рассмотренным в разделе 3.1.5. Основное различие между выражениями (3.1.73) - (3.1.75) и формулой (3.2.18) состоит в том, что метод групповых разложений приводит к марковскому интегралу столкновений в то время как в каждом члене диаграммного разложения (3.2.18) имеется запаздывание. Вообще говоря, диаграммное представление интеграла столкновений также можно свести к выражению, локальному во времени. Для этого диаграммная техника должна быть модифицирована таким образом, чтобы функции распределения fiit — т) выражались через функции fi t). Хотя эта версия диаграммной техники фактически эквивалентна групповым разложениям, она позволяет, в принципе, проводить частичное суммирование, что и является наиболее важным преимуществом диаграммных методов [72]. Следует, однако, отметить, что для кинетических уравнений с запаздыванием правила записи математических выражений, соответствующих диаграммам, и процедура суммирования значительно проще. В связи с этим в дальнейшем мы будем пользоваться диаграммным представлением интеграла столкновений в форме (3.2.18). Марковское приближение будет рассматриваться в каждом конкретном случае. [c.192] Так как оператор Лиувилля эрмитов, сингулярности резольвенты лежат на действительной оси комплексной плоскости 2 . Поэтому оператор R z) = -iz- -iL) можно аналитически продолжить и в нижнюю полуплоскость комплексной переменной 2 . [c.192] С такими же правилами построения диаграмм. [c.193] Вернуться к основной статье