ПОИСК Статьи Чертежи Таблицы Потенциал нулевого заряда из "Ингибиторы коррозии " Получающиеся молекулы хемосорбируются за счет неспаренного электрона гетероатома. Эффект синергизма при этом объясняют образованием ковалентной связи между неионизированной молекулой ингибитора и адсорбированным галогеном. [c.126] В связи с этим особое значение имеет потенциал нулевого заряда, на что впервые указал Фрумкин. За потенциал нулевого заряда (фн. з) принимают потенциал металла, измеренный по отношению к электроду сравнения в условиях, когда заряд металла равен нулю. При потенциале нулевого заряда двойной ионный слой на электроде отсутствует, хотя скачок потенциала на границе металл— электролит не равен нулю. Потенциалы нулевого заряда являются в некотором отношении специфическими константами металлов, характеризующими их поведение (адсорбцию, смачиваемость, течение электрохимических реакций, твердость и т. д.). При потенциалах нулевого заряда электрод обладает наибольшей способностью адсорбировать растворенные в электролите вещества, хуже всего смачивается растворителем, имеет максимальную твердость. Эти свойства связаны с той особой ролью, которую играет скачок потенциала в двойном ионном слое. От его знака и значения зависит адсорбция ионов и молекул на электроде. Способность электрода адсорбировать органические молекулы понижается при наличии скачка потенциала в двойном ионном слое. По мнению Фрумкина, это объясняется тем, что поле втягивает молекулы воды, имеющие большую диэлектрическую проницаемость, вытесняя с поверхности органические молекулы. Поэтому адсорбционная способность электрода оказывается максимальной вблизи потенциала нулевого заряда, т. е. в тех условиях, когда отсутствует ионный слой. Введением в электролит поверхностно-ак-тивных ионов можно изменять знак и величину ионного слоя, а значит, и адсорбционную способность электрода. [c.127] Процессы смачивания металлических поверхностей электролитами, играющие большую роль в развитии коррозии, а также процессы обезжиривания, широко применяемые в технологии противокоррозионной защиты, тоже зависят от строения двойного ионного слоя. Смачивание оказывается наименьшим при потенциале нулевого заряда. Изменением потенциала металла в отрицательную или положительную сторону можно изменить смачиваемость поверхности. Метод катодного обезжиривания металлов использует эффект воздействия поля двойного ионного слоя на адсорбционные процессы. Изменение скачка потенциала в диффузной части двойного слоя с помощью поверхностно-активных веществ, облегчающее адсорбцию органических катионов, и комбинированная защита металлов с помощью катодной поляризации и ингибиторов в ряде случаев связаны с изменением потенциала нулевого заряда. [c.127] Задача, таким образом, состоит в том, чтобы иметь надежные данные о значениях потенциалов нулевого заряда металлов. [c.128] К сожалению, потенциал нулевого заряда не является абсолютной константой, характерной для данного металла, как это ранее предполагали. Он зависит от многих факторов и в особенности от Содержания поверхностно-активных веществ в электролите. Кроме того, нет надежных методов определения точек нулевого заряда для твердых металлов, я в литературе часто встречаются различные значения для одного и того же металла. Наиболее достоверные значения потенциалов нулевого заряда для некоторых металлов приведены в табл. 4.3. [c.128] Особо следует остановиться на потенциале нулевого заряда железа, поскольку сплавы на его основе чаще всего приходится защищать ингибиторами. По Антропову, потенциал нулевого заряда для железа равен нулю. Это значение получено расчетом с использованием работы выхода электрона We (фи. з= е—4,7). При этом допускалось, что скачок потенциала, возникающий при адсорбции воды на поверхности металла, и скачок потенциала внутри металлической фазы при потенциале нулевого заряда не зависят от природы металла. [c.128] Из изложенного видно, что определение потенциалов нулевого заряда имеет принципиальное значение при выяснении механизма ингибирования оно дает возможность предсказать, какие соединения должны лучще всего адсорбироваться на железе. [c.129] К сожалению, отсутствие надежных данных о потенциале нулевого заряда железа создает предпосылки для достаточно вольных трактовок механизма действия ингибиторов, периодически появляющихся в литературе (исследователи часто выбирают тот потенциал, который им больще подходит). [c.129] Знание потенциалов нулевых зарядов металлов и стационарных потенциалов в данной среде может значительно облегчить отыскание ингибиторов коррозии. Если потенциал нулевого заряда больше стационарного потенциала металал в данном электролите фн. з Фст, т. е. поверхность металла в условиях коррозии заряжена отрицательно, то наиболее вероятна адсорбция катионов или положительно заряженных коллоидных частиц. При фн. з фст, т. е. когда поверхность металла заряжена полож ительно, наиболее вероятна адсорбция анионов и отрицательно заряженных коллоидных частиц. [c.130] Поляризацией электрода от внешнего источника тока можно изменить заряд поверхности, а этим и адсорбцию. Так, Колотыр-кин и Медведева [68] показали, что в области потенциалов, близких к нулевой точке, катодная поляризация никеля (вследствие изменения знака заряда от положительного к отрицательному) приводит к десорбции анионов и резкому повышению перенапряжения водорода. [c.130] Следует также учесть, что окисление поверхности металла может влиять не только на его адсорбционные свойства, но на другие, в частности на смачивание. Известно, что окисленная поверхность является более гидрофильной, чем восстановленная. В присутствии окислов увеличивается смачиваемость водой никеля, кадмия, хрома, меди, титана и других металлов, что, естественно, снижает адсорбцию органических соединений. [c.131] Изменение потенциала нулевого заряда металлов под влиянием галогенид-ионов является специфичным для каждого хметалла. На ртути адсорбция галогенид-ионов, по Фрумкину [70], является обратимой, она носит электростатический характер, а отчасти и специфический, обусловленный образованием связей, близких к ковалентным. Энергия активации адсорбции из растворов невелика. При адсорбции галогенид-ионов на ртути они участвуют в формировании ионной части двойного электрического слоя, поэтому смещают потенциал нулевого заряда в отрицательную сторону. Однако на железе характер адсорбции иной и адсорбция, по мнению многих исследователей, носит необратимый характер. Ионы галогенидов, адсорбируясь необратимо, входят в состав металлической обкладки двойного слоя, их заряды составляют часть заряда поверхности металла, поэтому возникающие на по верхно-сти металла диполи смещают потенциал нулевого заряда в положительную сторону. Различный характер адсорбции галогенид-ионов на железе и ртути подтверждается еМ Костными и поляризационными измерениями на ртути адсорбция анионов увеличивает емкость двойного электрического слоя и ускоряет разряд ионов водорода, а на железе емкость падает и разряд ионов водорода замедляется. [c.131] Если потенциал незаряженной поверхности достаточно достоверен, то поскольку приведенная шкала потенциалов характеризует заряд поверхности в коррозионной среде, можно по значению этого потенциала предсказать, какое соединение будет преимущественно адсорбироваться на данном металле и о-кажется эффективным ингибитором. Если потенциал металла срСО, то на нем преимущественно будут адсорбироваться добавки катионного типа, адсорбция анионов будет крайне слаба. Если потенциал металла по приведенной шкале ф 0, на нем преимущественно должны адсорбироваться ингибиторы анионного типа, ингибиторы катионного типа на этом металле адсорбироваться не будут. [c.131] Следует, однако, заметить, что отмеченная выше закономерность соблюдается не всегда многие ингибиторы адсорбируются в широкой области потенциалов, в том числе и на одноименно заряженной с ингибитором поверхности. Изложенные выше теоретические соображения учитывают лишь электростатическую адсорбцию, в то время как многие ингибиторы адсорбируются за счет специфической адсорбции, а также химической. При наличии п-электронного взаимодействия между органическим веществом и поверхностью металла адсорбция возможна как при положительных, так и отрицательных зарядах поверхности, а при химической адсорбции электростатическое взаимодействие играет отнюдь не главную роль. [c.132] Вернуться к основной статье