ПОИСК Статьи Чертежи Таблицы Свойство грубости динамической системы из "Введение в теорию нелинейных колебаний " Из физических соображений очевидно, что в дифференциальных уравнениях (3.1), описывающих движение реальной физической системы, ни один из учитываемых нами факторов не может оставаться абсолютно неизменным во времени. Следовательно, правые части уравнений (3.1), вообще говоря, изменяются вместе с входяпшми в них физическими параметрами. Однако если эти изменения достаточно малы, то, как показывает практика, физическая система как бы не замечает этих изменений, качественные черты ее поведения сохраняются. Поэтому, если мы хотим, чтобы уравнения (3.1) отобразили эту особенность, нужно придать им свойство грубости, а именно при малых изменениях параметров должна оставаться неизменной качественная структура разбиения фазовой плоскости на траектории. Тем самым выделится класс грубых динамических систем. Грубость динамической системы можно трактовать как устойчивость структуры разбиения ее фазового пространства на траектории по отношению к малым изменениям дифференциальных уравнений (3.1). [c.44] в грубой системе существуют лишь такие состояния равновесия, для которых А О и для которых а Ф О, если А 0 лишь такие предельные циклы, для которых ft =5 0 лишь такие сепаратрисы, которые не идут из седла в седло. Эти условия накладывают ограничения и на типы ячеек, возможных в грубых системах [I, 2]. [c.45] Вернуться к основной статье