ПОИСК Статьи Чертежи Таблицы Динамика продольного движения из "Теория вертолета " Приравняв нулю первое слагаемое, получим характеристическое уравнение для режима висения (Ми, = Хи, = 0), которое распадается на два уравнения, соответствующие изолированным горизонтальному и вертикальному движениям. [c.754] Подытоживая, можно сказать, что полет вперед влияет на динамику продольного движения тем, что появляются момент тангажа от вертикальной скорости и вертикальное ускорение, вызванные угловой скоростью тангажа и инерционностью вертолета. Их произведение дает член —в характеристическом уравнении. Влияние скорости полета на корни легко установить, если рассматривать характеристическое уравнение как передаточную функцию некоторой разомкнутой системы с коэффициентом обратной связи Полюсы разомкнутой системы являются корнями характеристического уравнения для режима висения (строго говоря, это корни для режима висения, полученные с производными устойчивости, соответствующими полету вперед). Кроме того, имеется двойной нуль разомкнутой системы в начале координат. Режиму висения соответствуют два действительных корня для движений по тангажу и вертикали и два длиннопериодических слабо неустойчивых колебательных корня. За коэффициент обратной связи можно принять и л , поскольку производная Mw пропорциональна ц. Корневой годограф при изменении или, что то же самое, скорости полета, показан на рис. 15.10, где видно изменение корней продольного движения как при исходной неустойчивости по углу атаки от несущего винта (М 0), так и при устойчивости по углу атаки, создаваемой достаточно большим стабилизатором Ми, 0). [c.754] Вертолет с довольно большим стабилизатором может быть в целом статически устойчив по углу атаки. В этом случае при полете вперед действительные корни движений по тангажу и вертикали переходят в колебательные с коротким периодом и высоким демпфированием, а длиннопериодические корни обычно перемещаются в левую полуплоскость с небольшим увеличением периода и демпфирования. Таким образом, динамика вертолета со стабилизатором при полете вперед характеризуется короткопериодическим колебательным движением, обусловленным демпфированием по вертикали и тангажу, и длиннопериодическим колебательным движением, устойчивость которого обусловлена статической устойчивостью по углу атаки. Стабилизатор, достаточно большой для того, чтобы обеспечить высокий уровень статической устойчивости, не всегда приемлем на практике, особенно при бесшарнирном несущем винте. Его эффективность снижается на малых скоростях вследствие влияния винта и фюзеляжа. Тем не менее он настолько улучшает характеристики управляемости, что большинство одновинтовых вертолетов снабжается стабилизатором. [c.755] Неравномерность индуктивного потока — важный фактор в динамике полета вперед, обусловливающий значительные изменения производных устойчивости. Например, производная устойчивости по скорости особенно чувствительна к продольным изменениям индуктивной скорости. В настоящем анализе частота вращения несущего винта полагалась постоянной. На режимах авторотации, снижения с работающими двигателями или в отсутствие регулятора оборотов могут иметь место значительные колебания частоты вращения, которые существенно влияют на динамику вертолета. Установлено, что на режиме авторотации несущий винт статически нейтрален по скорости (jWu = 0) и статически устойчив по углу атаки (jW O). [c.756] Здесь также пренебрегается небольшой вертикальной силой, определяемой производной Zq. [c.756] Эти уравнения сохраняют основные для полета вперед взаимосвязи продольного момента с углом атаки и вертикального ускорения с угловой скоростью тангажа. Короткопериодическая аппроксимация представляет собой систему второго порядка для двух степеней свободы 0в и zb член с восстанавливающей гравитационной силой находится в уравнении для продольных сил. [c.756] Второе слагаемое представляет собой ускорение, определяемое установившейся реакцией угловой скорости тангажа на отклонение управления. [c.758] ПО углу атаки очевидно. Как начальная, так и установившаяся реакции пропорциональны Me, так что в условие не входит производная момента управления. Заметим, что увеличение SzSe не меняет начальной реакции, но уменьшает время перегиба путем уменьшения чувствительности управления. В работах [А. 16] и [В. 124] представлены диаграммы, связывающие условие о кривизне, с производными устойчивости и корнями. [c.761] Анализируя условие о кривизне или градиент отклонения ручки по перегрузке, можно заключить, что маневренность вертолета сильно зависит от размеров стабилизатора. Устойчивость по углу атаки, обусловленная стабилизатором, является эффективным средством получения требуемой реакции по перегрузке. Ясно, что вертолет без стабилизатора не будет иметь удовлетворительных характеристик управляемости в короткопериодическом движении. Увеличение демпфирования по тангажу путем использования обратной связи по угловой скорости тангажа или применения бесшарнирного несущего винта улучшает короткопериодическую реакцию за счет уменьшения чувствительности управления, особенно на малых скоростях полета (пока не увеличится производная устойчивости по углу атаки). [c.761] Важными характеристиками управляемости вертолета являются отклонения продольного управления, требуемые для изменения скорости и перегрузки. Статическая устойчивость по скорости имеет место, если отклонению ручки от себя соответствует увеличение скорости, т. е. (36,s/dp, 0. Этот градиент отклонения ручки непосредственно связан с производной устойчивости по скорости Ма. Обычно при увеличении поступательной скорости вертолета плоскость концов лопастей заваливается назад, и для балансировки вертолета требуется отклонение вперед плоскости управления (разд. 15.1). На малых скоростях полета, однако, некоторые вертолеты имеют неустойчивый градиент отклонения ручки по скорости. Для приемлемых характеристик маневренности при полете вперед требуется положительный градиент отклонения ручки по перегрузке d d sjdaz 0. Анализ, приведенный в предыдущем разделе, показывает, что градиент отклонения управления связан с производными устойчивости по углу атаки М-л и демпфирования Mq и, следовательно, с условием о кривизне кривой нормального ускорения. Для приемлемых характеристик маневренности требуется некоторый минимальный градиент или максимальная эффективность управления. [c.763] Простейшим способом определения градиентов управления является нахождение зависимости отклонения ручки в функции скорости или перегрузки и последующая численная или графическая оценка производной. Отклонение управления для обеспечения балансировочного положения или требуемого маневра точнее всего вычисляется с использованием анализа аэроупругости. Градиенты могут быть непосредственно получены и из анализа статической реакции на возмущение, как было изложено выше в связи с аппроксимацией линеаризованных уравнений движения. [c.763] Времена затухания вдвое ti/2 — 0,7 и 2,7 с, а колебательное движение имеет период Г = 22 с и время удвоения амплитуды ta = = 3,2 с. В случае вертолета с шарнирным винтом и стабилизатором короткопериодическое движение имеет параметры Г = 5,8 с и ti/o = 1,4 с, а короткопериодическое — 7 = 40 с и tij2 = 21 с. Таким образом, вертолет со стабилизатором при полете вперед имеет хорошо демпфированное короткопериодическое движение и слабо устойчивое длиннопериодическое. Заметим, что короткопериодическое движение представляет собой в основном связанные движения по 0в и is при незначительной продольной скорости, как это предполагалось в анализе короткопериодического движения. Для вертолета с бесшарнирным несущим винтом корни продольного движения при полете вперед изменяются аналогичным образом, хотя в этом случае для компенсации более сильной неустойчивости по углу атаки от несущего винта требуется стабилизатор больших размеров. [c.764] В работе [R.30] была исследована динамика продольного движения вертолета без стабилизатора и установлено, что основные проблемы управляемости при полете вперед связаны с неустойчивостью по углу атаки и усилиями на ручке при выполнении маневров. Неустойчивость по углу атаки приводила к неприемлемой реакции по нормальному ускорению при отклонении ручки на себя . Выяснился неустойчивый характер изменения нормального ускорения и зафиксированы нежелательные усилия на ручке при выполнении продольных и поперечных маневров на режиме висения. При полете вперед обнаружилось сильное ухудшение устойчивости длиннопериодических колебаний из-за неустойчивости по углу атаки, которое возрастало с увеличением скорости. Для обеспечения устойчивости по углу атаки при полете вперед было предложено применить стабилизатор. [c.765] Работа [G.130] посвящена летным исследованиям продольной управляемости вертолетов. Летчик хорошо ощ,ущ,ает нормальное ускорение, которое служит ему основным источником информации для управления траекторией при полете вперед. Поэтому взятие ручки на себя используется как стандартный маневр для определения реакции вертолета по нормальному ускорению. [c.765] Одновинтовой вертолет без стабилизатора реагировал на ступенчатое отклонение циклического шага непрерывно растущей угловой скоростью тангажа. Нормальное ускорение с некоторым запаздыванием возрастало без какой-либо тенденции к выходу на установившееся значение. При неподвижном управлении наблюдались неустойчивые колебания. Вертолет со стабилизатором на ступенчатое отклонение управления реагировал быстрым нарастанием угловой скорости, которая стремилась к постоянному значению. Нормальное ускорение возникало с запаздыванием, но спустя 2 с после отклонения, ручки оно стремилось к постоянному значению. Для выхода из маневра требовалось меньшее отклонение управления, и колебания при неподвижном управлении были слабозатухающими. Управляемость вертолета со стабилизатором оказалась гораздо более приемлемой. Пытаясь количественно определить желаемые характеристики, авторы использовали условие о кривизне в динамике продольного движения. Они заключили, что наиболее важной характеристикой продольной управляемости является кривая нарастания нормального ускорения при ступенчатом отклонении управления управляемость лучше, если рост ускорения начинается уже на первой секунде. Влияние стабилизатора проявлялось в основном в увеличении устойчивости по углу атаки, т. е. в изменении производной Mw от положительного значения (неустойчивость от винта и фюзеляжа) до отрицательного, по модулю равного половине исходного. [c.765] В работе [R.33] исследовалось влияние демпфирования по тангажу и крену на управляемость одновинтового вертолета. [c.765] Демпфирование увеличивалось путем применения гидростабилизирующего стержня, с помощью которого осуществлялась запаздывающая обратная связь по угловой скорости. Величина Мд При ЭТОМ увеличивалась в 3 раза относительно исходного значения. Запаздывающая обратная связь по угловой скорости существенно улучшала продольную управляемость при взятии ручки на себя . Без стабилизирующего стержня нормальное ускорение нарастало слишком долго, угловое ускорение было постоянным в течение первых 1,5 с, а кривизна кривой нормального ускорения была положительной в течение 2,5 с. С увеличением продольного демпфирования в 2—3 раза были получены приемлемые характеристики управляемости. Угловое ускорение быстро уменьшалось, и угловая скорость становилась постоянной. Кривая нормального ускорения сразу начинала подниматься вверх, а ее кривизна становилась отрицательной менее чем за 2 с. Увеличение демпфирования уменьшило частоту и увеличило Бремя удвоения амплитуды длиннопериодических колебаний они даже становились слабо устойчивыми при увеличении демпфирования в 2,7 раза относительно исходного. Поперечная управляемость при полете вперед оставалась удовлетворительной при введении запаздывающей обратной связи по 1угловой скорости крена. Увеличение поперечного демпфирования уменьшило установившуюся реакцию угловой скорости крена, которая обычно слишком велика. Начальное значение углового ускорения крена не изменилось, обратная связь улучшила длиннопериодическую реакцию и дала более постоянную реакцию угловой скорости крена на поперечное отклонение ручки. [c.766] Вернуться к основной статье