ПОИСК Статьи Чертежи Таблицы Двухвинтовой вертолет продольной схемы из "Теория вертолета " Двухвинтовой вертолет поперечной схемы имеет поперечную симметрию, поэтому его симметричные и антисимметричные движения на висении ив полете вперед полностью изолированы. На режиме висения его динамика в основном такая же, как и у вертолета продольной схемы, если поменять местами продольную и поперечную оси. Симметричные движения (продольное и вертикальное) для этой схемы соответствуют движениям одновинтового вертолета. Поперечное движение вертолета поперечной схемы соответствует продольному движению вертолета продольной схемы движения рыскания у них одинаковы. Перемена осей сильно влияет на характеристики управляемости, поскольку требования управляемости различны для продольного и поперечного движений. [c.740] В создании момента тангажа на вертолете продольной схемы участвует дифференциальная тяга винтов. Момент инерции по тангажу вертолета продольной схемы больше, чем у одновинтового. Все это приводит к существенным различиям в значениях производных устойчивости для двух схем. [c.742] Передаточная функция от продольного управления к скорости хв/Або для вертолета продольной схемы имеет один действительный нуль, настолько большой, что его влияние на переходные процессы несущественно. Передаточная функция от продольного управления к углу тангажа 0в/А6о также имеет один действительный отрицательный нуль при s = Хи, довольно малый, но не лежащий в начале координат, как в случае одновинтового вертолета. Можно сказать, что расположение полюсов и нулей передаточных функций вертолета продольной схемы в общем близко к случаю одновинтового вертолета (разд. 15.3.4.3), а корневые годографы для различных видов обратной связи аналогичны. Более высокие демпфирование и эффективность управления для вертолета продольной схемы несколько упрощают задачу пилотирования. [c.745] В качестве примера рассмотрим вертолет продольной схемы с параметрами, как в разд. 15.3.4.6, и расстоянием между винтами / = 1,8/ . Положим, что момент инерции фюзеляжа по тангажу в рассматриваемом случае больше (/ =38,2, й = 0,3). Полюсы продольного движения на режиме висения составляют S = —0,035 и S = 0,0005 Ю,0082, а соответствующие собственные векторы равны хв/0в = 0,07 и ]л в/6в1 = 0,28 80°. Действительный Kopejjb соответствует движению с временем затухания вдвое ti/2 = 0,9 с. Колебательное движение имеет период Г = 35 с (частота 0,03 Гц) и время удвоения амплитуды t 2 = 63 С. Нули передаточных функций составляют s = 1,03 для ifi/ABo и S = —0,001 для 6в/Або. С увеличением полетного веса или нагрузки на лопасть Ст/а демпфирование и период колебательного движения уменьшается. Для данного примера при Ст/о 0,07 колебательное движение неустойчиво. [c.745] Производная момента Путевого управления Nq для вертолета продольной схемы ниже, чем для вертолета с рулевым винтом, вследствие большего момента инерции фюзеляжа. Для шарнирных винтов, кроме того, эффективность путевого управления пропорциональна нагрузке на винты. Демпфирование по рысканию для типичного вертолета продольной схемы составляет около половины от демпфирования, создаваемого рулевым винтом, и зависит от нагрузки на винты. Производная Nr уменьшается еще более из-за увеличенного момента инерции. В результате время затухания вдвое t /2 составляет около 7 с, т. е. намного больше, чем для одновинтового вертолета. Вообще говоря, между движенйем рыскания и продольным движением вертолета продольной схемы существует взаимосвязь. Так, дифференциальный общий шаг создает момент рыскания, поэтому при отклонении продольного управления для выдерживания заданного курса необходимо координированное отклонение педалей. [c.746] Вернуться к основной статье