Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Вертикальная скорость втулки входит в быр, а скорости в плоскости вращения —в бит и би . Составляющие порыва ветра влияют аналогично скоростям втулки. Угловые скорости тангажа и крена винта порождают нормальную составляющую скорости 6ur, а движение рыскания в этом смысле аналогично движению лопасти в плоскости вращения. Установившаяся скорость полета на балансировочном режиме с составляющими ц и Япв определена в инерциальной системе координат. Изменения углов тангажа ау и крена ах вала вызывают возмущения составляющих скорости относительно плоскости втулки. Члены пвах и Хпва / в этих возмущениях на порядок меньше других и поэтому обычно не учитываются для вертолетных винтов с небольшими индуктивными скоростями. Угол установки лопасти измеряется относительно плоскости втулки, так что 60 = 0 — Кр . Здесь будем рассматривать только первые тоны махового движения и качания лопасти. Поскольку эквивалентная форма т) углового движения втулки точно равна г, формы лоиасти будем аппроксимировать так же rjp = tjj = г. При этом во многих случаях для движений лопасти и вала можно использовать одни и те же аэродинамические коэффициенты, что упрощает анализ. При численном анализе могут использоваться реальные формы, что несколько изменяет аэродинамические коэффициенты для степеней свободы винта, однако не сказывается существенно на расчетных характеристиках винта.

ПОИСК



Движение вала

из "Теория вертолета "

Вертикальная скорость втулки входит в быр, а скорости в плоскости вращения —в бит и би . Составляющие порыва ветра влияют аналогично скоростям втулки. Угловые скорости тангажа и крена винта порождают нормальную составляющую скорости 6ur, а движение рыскания в этом смысле аналогично движению лопасти в плоскости вращения. Установившаяся скорость полета на балансировочном режиме с составляющими ц и Япв определена в инерциальной системе координат. Изменения углов тангажа ау и крена ах вала вызывают возмущения составляющих скорости относительно плоскости втулки. Члены пвах и Хпва / в этих возмущениях на порядок меньше других и поэтому обычно не учитываются для вертолетных винтов с небольшими индуктивными скоростями. Угол установки лопасти измеряется относительно плоскости втулки, так что 60 = 0 — Кр . Здесь будем рассматривать только первые тоны махового движения и качания лопасти. Поскольку эквивалентная форма т) углового движения втулки точно равна г, формы лоиасти будем аппроксимировать так же rjp = tjj = г. При этом во многих случаях для движений лопасти и вала можно использовать одни и те же аэродинамические коэффициенты, что упрощает анализ. При численном анализе могут использоваться реальные формы, что несколько изменяет аэродинамические коэффициенты для степеней свободы винта, однако не сказывается существенно на расчетных характеристиках винта. [c.539]
Таким образом, даже на режиме висения существуют периодические коэффициенты, связывающие движения лопастей и вала. [c.541]
Маховое движение, возникающее вследствие движения вала, приводит к наклону вектора силы тяги и тем самым — к появлению на втулке сил в плоскости вращения. [c.543]
Таким образом, члены цаг, ХпЕ у и Я,пва исключаются из уравнений движения несущего винта и из реакций втулки. При использовании связанной системы координат добавляются соответствующие члены в выражения для инерционных сил, как отмечено в разд. 9.6. [c.543]
что при полете вперед движение несущего винта сильно связано с движением вала. [c.545]
Каждый из остальных коэффициентов аналогичен какому-либо из этих шести, как можно видеть по выражениям для режима висения, приведенным выше. [c.547]
При полете вперед все аэродинамические коэффициенты являются периодическими функциями азимута. [c.548]
В данной главе были определены аэродинамические силы и моменты, необходимые для дальнейшего анализа динамики несущего винта махового движения и совместных махового движения и качания лопасти (гл. 12), а также устойчивости и управляемости вертолета (гл. 15). При необходимости с помощью изложенного анализа и имеющейся литературы могут быть определены аэродинамические силы и для других моделей движения лопасти. В заключение дадим вывод выражений для аэродинамических сил при изменении угла установки лопасти и махового движения несущего винта. [c.549]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте