ПОИСК Статьи Чертежи Таблицы Круглая апертура из "Введение в фурье-оптику " В контексте этой книги апертурную функцию любой системы апертур (не обязательно лишь одной апертуры) полезно рассматривать как представление (оптической) структуры системы. [c.31] Картина дифракции Фраунгофера от круглой апертуры особенно важна в связи с требованиями к качеству большинства оптических приборов. [c.31] К сожалению, детали картины трудно получить графическим векторным методом, который использовался в предьщущем разделе для апертуры в виде щели. Причина состоит в том, что не все полоски, на которые предполагалась разделенной апертура, имеют теперь одинаковую длину (см. апертурные функции на рис. 2.5, а). Их размер постепенно увеличивается, а затем уменьшается по апертуре и векторная диаграмма уже не имеет формы правильного многоугольника. Решение для этого примера лучше всего получается аналитически, а детали можно найти в обычных учебниках. Дифракционная картина (рис. 2.4,а) представляет собой диск в центре, окруженный круглыми концентрическими полосами, и известна как картина Эри по имени сэра Джорджа Эри, члена Британского астрономического общества, который подробно исследовал ее детали в 1835 г. [c.31] Независимо от погрешностей объектива (линзы или зеркала) астрономического телескопа он даже в самом лучшем случае дает не точечное изображение звезды, а лишь картину Эри распределения интенсивности, обусловленного апертурой объектива телескопа (такую линзу называют дифракционно ограниченной). В более широком контексте гл. 5 эта картина-отклик системы на точечное (импульсное) воздействие-является функцией рассеяния точки (ФРТ) этой системы. [c.33] Уравнение (2,06) показьшает зависимость диаметра центрального диска диска Эри) от диаметра апертуры и длины волны света. Размер этого диска по существу и определяет предельное разрешение телескопа. Рассмотрим изображение двух звезд с малым угловым расстоянием 0 (рис. 2.6). Поскольку они являются некогерентными по отношению друг к другу источниками, изображение состоит из двух картин интенсивности Эри. Поэтому возможность разрешения двух звезд зависит от размера дисков Эри и расстояния, на котором они перекрываются. Общепринятое граничное условие, критерий Рэлея, представляет собой расстояние, показанное на рис. 2.4,6 и 2.5, в. Согласно этому критерию, две картины разрешаются, если центр диска Эри одной из них налагается на темное кольцо другой. Это обеспечивает провал на 20% в суммарной кривой интенсивности между пиками (которые предполагаются нами одинаковыми по интенсивности). Величина этого провала, хотя и выбрана весьма произвольной, тем не менее является во многих случаях удобным критерием разрешения. [c.33] Вернуться к основной статье