ПОИСК Статьи Чертежи Таблицы Ударная вязкость и работа разрушения из "Промышленные полимерные композиционные материалы " Автор работы, [119] расширил анализ простых ударных испытаний, выявив влияние предварительных напряжений в композиционных материалах на их работу разрушения. Он показал, что при таких динамических условиях локальный удар вызывает образование бегущей трещины, которая затем развивается под действием предварительно приложенного напряжения и многие композиционные материалы на основе углеродных волокон при этом обладают значительно меньшей энергией разрушения по сравнению с испытаниями при нормальном ударе. Эти факты имеют очень большое значение при конструировании изделий из композиционных материалов, так как в большинстве случаев ударные нагрузки приходятся на элементы конструкций, подвергнутые предварительной нагрузке, как, например, в случае лопастей турбовентиляторных двигателей. [c.126] Обычный эпоксидный стеклопластик имеет энергию разрушения около 1Q5 Дж/м2. В настоящее время не существует единого мнения о величине вклада отдельных механизмов процесса микроразрушения в общую энергию разрушения таких волокнистых композиционных материалов. Наиболее вероятно, что в различных типах материалов, особенно при различной поверхностной обработке волокон, широко применяемой для стеклянных и углеродных волокон, вклад отдельных механизмов будет различен. [c.128] В работе [175] исследовано влияние объемной долп волокон на ударную вязкость различных типов материалов на основе углеродных волокон (рис. 2.64). Показано, что чем выше прочность углеродных волокон, тем выше энергия разрушения материалов на их основе, вероятно вследствие большего увеличения накопленной упругой энергии в результате возрастания разрушающего напряжения, чвлМ вследствие увеличения модуля упругости волокон. Поверхностная обработка высокопрочных и высокомодульных углеродных волокон вызывает резкое понижение энергии разрушения материалов на их основе. [c.128] Энергия разрушения при росте трещины перпендикулярно направлению ориентации волокон обычно не чувствительна к выбору полимерной матрицы. Введение эластификаторов хотя и повышает величину Ур, однако это повышение незначительно при малом его количестве [28]. По вязкости разрушения очень хрупкие стекла, армированные углеродными волокнами, мало отличаются от материалов на основе пластичных полимеров [18]. Однако, как было показано Баркером [190], ударная вязкость по Шар-пи ряда композиционных материалов на основе различных углеродных волокон и различных полимерных матриц резко зависит от температуры испытаний. На кривых температурной зависимости ур композиционных материалов в области 7 с матрицы наблюдается максимум, значительно более резко выраженный, чем для ненаполненных матриц. Очевидно, что резкое возрастание ур композиционных материалов не может быть обусловлено только возрастанием энергии разрушения полимерной матрицы при ее Тс, а связано с изменением адгезионной прочности сцепления фаз. [c.130] Влияние соотношения стеклянных и углеродных волокон на поверхностную энергию разрушения (yf) гибридных композиционных материалов (на верхней тройной фазовой диаграмме показан истинный состав гибридных материалов) [134]. [c.131] ЦИОННЫХ материалов no сравнению с материалами на основе воле-кон только одного типа. Однако Харрис и Банселл [134] показали, что комбинирование углеродных и стеклянных волокон дает материалы с ударной вязкостью, предсказываемой простым правилом смеси (рис. 2.67). Модули упругости гибридных материалов также пропорциональны объемным долям и модулям упругости образующих их волокон. В настоящее время реализованы далеко не все возможности по созданию гибридных материалов с повышенными вязкостью разрушения, жесткостью и прочностью путем комбинирования различных типов высокопрочных волокон. [c.132] Вернуться к основной статье