ПОИСК Статьи Чертежи Таблицы Взаимодействие «энтропийных волн» с самими собой вообще является эффектом порядка бь взаимодействие же этих волн с вихревыми движениями, очень существенное в случае температурно-неоднородной среды, фактически порождает лишь энтропийные волны. Последний эффект, очевидно, должен проявляться и в несжимаемой жидкости; и действительно, здесь ои сводится к конвективному перемешиванию температурных неоднородностей при инерционном движении жидких частиц, описываемому членами уравнения Корсина, содержащими функцию О (или соответствующим членом Тт{к,1) спектрального уравнения’(14.63)). Таким образом, и с этим эффектом мы уже много раз имели дело и можем на нем больше не задерживаться. Из эффектов, вызываемых взаимодействием звука с вихревой и с энтропийной компонентами движения, особо важными представляются эффекты порождения звука, обычно интерпретируемые как «рассеяние» звука на пульсациях полей скорости и температуры. Взаимодействие звука с вихревыми движениями может приводить и к порождению вихревых движений, а его взаимодействие с энтропийной компонентой — к порождению энтропийной компоненты; однако соответствующие эффекты «конвекции вихрей и температурных неоднородностей акустическими волнами» в реальных условиях очень малы по сравнению с аналогичной конвекцией, создаваемой вихревой компонентой поля скорости. Наконец, последний пока еще не упомянутый эффект, не содержащий множителя б,, заключается в порождении завихренности прн взаимодействии энтропийных волн, создающих градиент энтропии (плотности), и звуковых волн, создающих градиент давления; учет этого эффекта (описываемого так называемым «членом Бьеркнеса» уравнения баланса вихря в сжимаемой жидкости) существенен при объяснении происхождения крупномасштабных циркуляционных процессов в земной атмосфере. но при исследовании мелкомасштабной турбулентностн нм обычно также можно пренебречь. [Выходные данные]