ПОИСК Статьи Чертежи Таблицы В качестве «фиктивных нагрузок», как отмечалось выше, можно выбирать не только сосредоточенные силы, но и другие силовые особенности. Например, в [39] при рассмотрении задач о тонких включениях и трещинах используются наряду с сосредоточенными силами особен ности типа диполя. Описанный способ приводит, вообще говоря, к сингулярным ИУ. Метод особенностей позволяет получить и регулярные ИУ. Для этого можно поступить следующим образом. Рассмотрим со вокупность плоскостей, касающихся данного тела. Пусть Лм — та из них, которая касается тела в произвольной точке М. Поместим в точке М сосредоточенную силу Рм и вычислим напряжения и (или) смещения, возникающие при этом на месте границы 5 тела в полупространстве, ограниченном плоскостью Лл!-. Проделав аналогичные вычисления при перемещении точки М по поверхности S и просуммировав вклады, соответствующие различным положениям касательной плоскости, придем, используя граничные условия, к регулярным ИУ по границе S тела относительно распределения сосредоточенных сил. Описанный прием применительно к задачам теории упругости предложен в [36]. Там же показано, что в двумерном случае возникают регулярные ИУ, эквивалентные ИУ Лаурйчеллы — Шермана [41], Подобный способ применяется при сведении к регулярным ИУ краевых задач для систем эллиптических дифференциальных уравнений общего вида и называется обычно методом полуплоскостей или методом замораживания. [Выходные данные]