Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

[<< Стр.]    [Стр. >>]

Если же на форму тела и распределение масс внутри него не накладывается никаких ограничений, кроме тех, которые были Сделаны в начале этого параграфа, интеграл ,(1.1.1) можно вычислить только при помощи ряда. Наиболее распространенным в настоящее время разложением для потенциала является разложение по сферическим функциям. Применение сферических функций, как мы увидим в § 1.5, позволяет получить довольно простую и удобную для практических приложений аналитическую формулу для потенциала.

[<< Стр.]    [Стр. >>]

ПОИСК



Если же на форму тела и распределение масс внутри него не накладывается никаких ограничений, кроме тех, которые были Сделаны в начале этого параграфа, интеграл ,(1.1.1) можно вычислить только при помощи ряда. Наиболее распространенным в настоящее время разложением для потенциала является разложение по сферическим функциям. Применение сферических функций, как мы увидим в § 1.5, позволяет получить довольно простую и удобную для практических приложений аналитическую формулу для потенциала.

[Выходные данные]

© 2025 Mash-xxl.info Реклама на сайте