Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

[<< Стр.]    [Стр. >>]

Из этой формулы видно, что введение демпфирования увеличивает эффективность виброизоляции на низких частотах, в особенности на резонансной частоте сйо, и таким образом позволяет избежать чрезмерного усиления вибраций, передаваемых на фундамент в этом диапазоне частот. На более высоких частотах эффективность Q зависит от того, как изменяется коэффициент потерь с ростом частоты. Если т) не зависит от частоты, то высокочастотная эффективность виброизоляции приближенно описывается выражением 401g(o)/fflo) и слабо зависит от потерь, стремясь к прямой с наклоном 12 дБ на октаву (см. рис. 7.14, где кривые 2 VI 3 соответствуют О ria <С Т1з) ¦ Если имеет место вязкое демпфирование, то коэффициент потерь пропорционален частоте т] = (ог/Со (см. формулу (7.9)) и эффективность (7.26) на высоких частотах стремится к прямой Q = 20 Ig (Modtjr), имеющей наклон 6 дБ на октаву. Это, однако, имеет место уже на частотах, где вязкое сопротивление амортизатора превосходит упругое и его общая жесткость определяется в основном вязким демпфером. Для амортизаторов, жесткость и потери которых произвольным образом зависят от частоты, эффективность виброизоляции Q{(ii) может быть получена по формуле (7.26), в которую подставлены экспериментально измеренные функции Со (со) и т)((й). Так, многие применяемые на практике амортизаторы выполняются из звукопоглощающего материала (резины) конечных размеров. Начиная с некоторой частоты, в них проявляются волновые явления и зависимости их жесткости и потерь от частоты становятся весьма сложными [45, 80, 87, 88, 220]. Поэтому эффективность  (со) реальных амортизаторов характеризуется спадами и подъемами, связанными с резонансными явлениями в амортизаторах [45, 81, 186].

[<< Стр.]    [Стр. >>]

ПОИСК



Из этой формулы видно, что введение демпфирования увеличивает эффективность виброизоляции на низких частотах, в особенности на резонансной частоте сйо, и таким образом позволяет избежать чрезмерного усиления вибраций, передаваемых на фундамент в этом диапазоне частот. На более высоких частотах эффективность Q зависит от того, как изменяется коэффициент потерь с ростом частоты. Если т) не зависит от частоты, то высокочастотная эффективность виброизоляции приближенно описывается выражением 401g(o)/fflo) и слабо зависит от потерь, стремясь к прямой с наклоном 12 дБ на октаву (см. рис. 7.14, где кривые 2 VI 3 соответствуют О ria <С Т1з) ¦ Если имеет место вязкое демпфирование, то коэффициент потерь пропорционален частоте т] = (ог/Со (см. формулу (7.9)) и эффективность (7.26) на высоких частотах стремится к прямой Q = 20 Ig (Modtjr), имеющей наклон 6 дБ на октаву. Это, однако, имеет место уже на частотах, где вязкое сопротивление амортизатора превосходит упругое и его общая жесткость определяется в основном вязким демпфером. Для амортизаторов, жесткость и потери которых произвольным образом зависят от частоты, эффективность виброизоляции Q{(ii) может быть получена по формуле (7.26), в которую подставлены экспериментально измеренные функции Со (со) и т)((й). Так, многие применяемые на практике амортизаторы выполняются из звукопоглощающего материала (резины) конечных размеров. Начиная с некоторой частоты, в них проявляются волновые явления и зависимости их жесткости и потерь от частоты становятся весьма сложными [45, 80, 87, 88, 220]. Поэтому эффективность (со) реальных амортизаторов характеризуется спадами и подъемами, связанными с резонансными явлениями в амортизаторах [45, 81, 186].

[Выходные данные]

© 2025 Mash-xxl.info Реклама на сайте