ПОИСК Статьи Чертежи Таблицы В зависимости от выбора матрицы Н и вектора С получаются различные итерационные методы. Эти величины выбирают такими, чтобы формула (2.14) была согласована с (2.13), т. е. Х = НХ -ЬС. Основные итерационные методы: простой итерации, Якоби, Гаусса— Зейделя, релаксационные. Для практической реализации итерационных методов необходимо выбрать способ ускорения сходимости и установить критерий окончания итерационного процесса. Способы ускорения сходимости весьма разнообразны, но часто основываются на оценке максимального Л (Н) и минимального та(Н) по модулю собственных значений матрицы Н. Идеальным критерием окончания итераций является норма вектора ошибки Ел, но непосредственно ее определить невозможно, так как точное решение X неизвестно. Поэтому для итерационного процесса (2.13) вводится вектор приращений (вектор псевдоневязки) ДХй= —Ха+1—Ха, связанный с вектором ошибки следующим равенством ДХ.,= (Н—1)Еа, где I — единичная матрица. Переходя к оценке по нормам, получим [Выходные данные]