ПОИСК Статьи Чертежи Таблицы В теории дифференциальных уравнении доказывается сходимость рядов, расположенных по степеням параметров, определяемых начальными условиями. Сходимость эта, вообще говоря, не является равномерной относительно независимой переменной (в механике — времени), т. е. радиус сходимости степенного ряда убывает с ростом интервала, в котором рассматривается изменение независимого переменного. Если известно заранее, что искомое решение является периодическим и тем самым интервал изменения независимой переменной фиксируется величиной периода, то, согласно сказанному, всегда может быть указано такое достаточно малое значение параметра, чтобы ряд, представляющий решение, был равномерно сходящимся относительно независимой переменной. [Выходные данные]