ПОИСК Статьи Чертежи Таблицы лучше понять сущность этого метода, рассмотрим его для случая пространства проектирования, определяемого двумя переменными. Исходную область неопределенности в зависимости от размерности пространства отобразим на единичный квадрат, куб или гиперкуб. Это позволит вести поиск в нормированной области со стороной, равной единице. В гиперкубе построим сетку, образованную попарно симметричными взаимно ортогональными плоскостями, параллельными координатным направлениям, вдоль которых изменяются проектные параметры. Эти плоскости пересекаются по прямым, которые в свою очередь пересекаются в точках, называемых в дальнейшем узлами (рис. 7.4). Вычислим значения целевой функции в узлах и в центре куба. В случае М проектных параметров получим значений целевой функции, из которых выберем наибольшее. Примем соответствующий узел за центр гиперкуба меньших размеров и продолжим исследование. Процесс продолжается до тех пор, пока не будет достигнута требуемая степень сужения Интервала неопределенности. Если в области допустимых значе- [Выходные данные]