Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

[<< Стр.]    [Стр. >>]

На рис. 8.2 показано преобразование некоторых дифференциальных элементов линии, площади и объема при переходе от одного из пространств X и Z к другому. Так как в Z все эти элементы имеют более простую геометрическую форму, удрбнее вместо величин dV{x) (а также dA{x), dS(x) и т. д.), входящих в основные соотношения МГЭ, использовать их отображения в Z, в качестве которых всегда могут быть выбраны одинаковые «единичные» элементы независимо от размера их прообразов в X. Хотя именно неплоские поверхностные ячейки (в трехмерном случае) и граничные линейные элементы (в двумерном) определяют главные индивидуальные черты МГЭ, проще все-таки иметь дело с ними после соответствующего преобразования ячеек объема (в трехмерном случае) и площади (в двумерном). Рассмотрим в Z объемный дифференци-

[<< Стр.]    [Стр. >>]

ПОИСК



На рис. 8.2 показано преобразование некоторых дифференциальных элементов линии, площади и объема при переходе от одного из пространств X и Z к другому. Так как в Z все эти элементы имеют более простую геометрическую форму, удрбнее вместо величин dV{x) (а также dA{x), dS(x) и т. д.), входящих в основные соотношения МГЭ, использовать их отображения в Z, в качестве которых всегда могут быть выбраны одинаковые «единичные» элементы независимо от размера их прообразов в X. Хотя именно неплоские поверхностные ячейки (в трехмерном случае) и граничные линейные элементы (в двумерном) определяют главные индивидуальные черты МГЭ, проще все-таки иметь дело с ними после соответствующего преобразования ячеек объема (в трехмерном случае) и площади (в двумерном). Рассмотрим в Z объемный дифференци-

[Выходные данные]

© 2025 Mash-xxl.info Реклама на сайте