Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

[<< Стр.]    [Стр. >>]

Когда речь заходит об осцилляторах, большинство из пас, по-видимому, прежде всего представляет себе механические осцилляторы, такие, как пружины. Еще один не менее известный пример механического осциллятора — маятник. Если амплитуда колебаний достаточно мала, то маятник можно рассматривать как линейный осциллятор, но при больших амплитудах это — нелинейный осциллятор. Во многих случаях, представляющих значительный интерес для практических приложений, нам приходится иметь дело со связанными осцилляторами. Достаточно взять какое-нибудь упругое тело: математической моделью его служит система связанных между собой конечных элементов, каждьи! из которых может быть представлен осциллятором. Такого рода математические модели играют важную роль в механике, например при расчете вибрации двигателей или высотных сооружений или флаттера крыла самолета. Разумеется, иногда мы рассматриваем предельные случаи, в которых конечные элементы аппроксимируют непрерывное распределение, соответствующее нашему исходному представлению о сплошной среде. Колебания встречаются не только в механике, но и в электро- и радиотехнике. Здесь нам приходится иметь дело не только с колебательными контурами на старых электронных лампах, но и с новыми устройствами с колебательными контурами иа транзисторах и других электронных приборах.

[<< Стр.]    [Стр. >>]

ПОИСК



Когда речь заходит об осцилляторах, большинство из пас, по-видимому, прежде всего представляет себе механические осцилляторы, такие, как пружины. Еще один не менее известный пример механического осциллятора — маятник. Если амплитуда колебаний достаточно мала, то маятник можно рассматривать как линейный осциллятор, но при больших амплитудах это — нелинейный осциллятор. Во многих случаях, представляющих значительный интерес для практических приложений, нам приходится иметь дело со связанными осцилляторами. Достаточно взять какое-нибудь упругое тело: математической моделью его служит система связанных между собой конечных элементов, каждьи! из которых может быть представлен осциллятором. Такого рода математические модели играют важную роль в механике, например при расчете вибрации двигателей или высотных сооружений или флаттера крыла самолета. Разумеется, иногда мы рассматриваем предельные случаи, в которых конечные элементы аппроксимируют непрерывное распределение, соответствующее нашему исходному представлению о сплошной среде. Колебания встречаются не только в механике, но и в электро- и радиотехнике. Здесь нам приходится иметь дело не только с колебательными контурами на старых электронных лампах, но и с новыми устройствами с колебательными контурами иа транзисторах и других электронных приборах.

[Выходные данные]

© 2025 Mash-xxl.info Реклама на сайте