Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

[<< Стр.]    [Стр. >>]

§ 3.1. Сведение проблемы к эквивалентной задаче для одного тела. Рассмотрим консервативную систему, состоящую из двух точек с массами гп  и т . Единственными силами, действующими на эти точки, мы будем считать силы, обусловленные потенциалом взаимодействия V, относительно которого мы будем предполагать, что он является функцией вектора Г  — Г2, относительной скорости Г1 — Г2 и производных более высокого порядка от fi — Г2. Рассматриваемая система имеет шесть степеней свободы и, следовательно, характеризуется шестью независимыми обобщенными координатами. В качестве таких координат мы выберем три составляющих радиуса-вектора R, идущего в центр масс системы, и три составляющих вектора г = Г2 — Тогда лагранжиан этой системы будет иметь вид

[<< Стр.]    [Стр. >>]

ПОИСК



§ 3.1. Сведение проблемы к эквивалентной задаче для одного тела. Рассмотрим консервативную систему, состоящую из двух точек с массами гп и т . Единственными силами, действующими на эти точки, мы будем считать силы, обусловленные потенциалом взаимодействия V, относительно которого мы будем предполагать, что он является функцией вектора Г — Г2, относительной скорости Г1 — Г2 и производных более высокого порядка от fi — Г2. Рассматриваемая система имеет шесть степеней свободы и, следовательно, характеризуется шестью независимыми обобщенными координатами. В качестве таких координат мы выберем три составляющих радиуса-вектора R, идущего в центр масс системы, и три составляющих вектора г = Г2 — Тогда лагранжиан этой системы будет иметь вид

[Выходные данные]

© 2025 Mash-xxl.info Реклама на сайте