Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

[<< Стр.]    [Стр. >>]

Вторая часть монографии посвящена «микроскопическому» описанию трещиноватых упругих и пороупругих сред и проблеме рассеяния волн на случайных неоднородностях. Основное её содержание сводится к применению методов квантовой теории поля и диаграммной техники Фейнмана [1] для вычисления усредненного поля деформахщй и его среднеквадратичных флуктуаций в трещиноватых упругих и пороупругих средах. Физическая мощь этих методов обусловлена тем, что они не связаны никакими ограничениями со стороны длин и частот распространяющихся в среде волн, ни с характером распределения случайных и регулярных неоднородностей. Математическая их мощь заключается в том, что они позволяют получить точные уравнения для одночастичной и двухчастичной функций Грина, контролирующих динамику усреднённого поля деформаций и его двухчастичной (парной) функции корреляций, и, в частности, амплитуду и энергию распространяющихся, отраженных, преломленных и рассеянных волн. Ядра этих уравнений (массовые операторы) нелокальны во времени и пространстве, их преобразования Фурье являются комплексными функциями частоты и волнового вектора. Тем самым они учитывают временную и пространственную дисперсию сейсмических и акустических волн и полностью определяют их спектр и затухание в трещиноватых упругих и пороупругих средах. К сожалению, эти ядра не могут быть вычислены точно (что было бы эквивалентно решению проблемы многих тел), и для их приближенного расчёта разработана диаграммная техника, позволяющая просуммировать бесконечную последовательность наиболее важных членов ряда, отвечающих за тот или иной процесс взаимодействия волн со средой.

[<< Стр.]    [Стр. >>]

ПОИСК



Вторая часть монографии посвящена «микроскопическому» описанию трещиноватых упругих и пороупругих сред и проблеме рассеяния волн на случайных неоднородностях. Основное её содержание сводится к применению методов квантовой теории поля и диаграммной техники Фейнмана [1] для вычисления усредненного поля деформахщй и его среднеквадратичных флуктуаций в трещиноватых упругих и пороупругих средах. Физическая мощь этих методов обусловлена тем, что они не связаны никакими ограничениями со стороны длин и частот распространяющихся в среде волн, ни с характером распределения случайных и регулярных неоднородностей. Математическая их мощь заключается в том, что они позволяют получить точные уравнения для одночастичной и двухчастичной функций Грина, контролирующих динамику усреднённого поля деформаций и его двухчастичной (парной) функции корреляций, и, в частности, амплитуду и энергию распространяющихся, отраженных, преломленных и рассеянных волн. Ядра этих уравнений (массовые операторы) нелокальны во времени и пространстве, их преобразования Фурье являются комплексными функциями частоты и волнового вектора. Тем самым они учитывают временную и пространственную дисперсию сейсмических и акустических волн и полностью определяют их спектр и затухание в трещиноватых упругих и пороупругих средах. К сожалению, эти ядра не могут быть вычислены точно (что было бы эквивалентно решению проблемы многих тел), и для их приближенного расчёта разработана диаграммная техника, позволяющая просуммировать бесконечную последовательность наиболее важных членов ряда, отвечающих за тот или иной процесс взаимодействия волн со средой.

[Выходные данные]

© 2025 Mash-xxl.info Реклама на сайте