ПОИСК Статьи Чертежи Таблицы Вторая система качественно иначе ведет себя под нагрузкой. Исходное вертикальное положение стержня остается устойчивым до тех пор, пока Р < 1. В точке бифуркации ось ординат, соответствующая на рис. 1.10, б исходному положению равновесия, пересекается с кривой Р = cos ф, которая описывает новое неустойчивое положение равновесия. Точка критическая, поскольку при переходе через нее устойчивое исходное положение равновесия становится неустойчивым. Для второй системы критическая нагрузка == < 1- При достижении критической нагрузки рассматриваемая система не сможет оставаться в исходном вертикальном положении, поскольку оно становится неустойчивым и любые сколь угодно малые возмущения выведут ее из него. Но в отличие от первой системы у второй нет никаких новых устойчивых положений статического равновесия в окрестности критической точки бифуркации 5 . Поэтому потеря устойчивости исходного вертикального положения равновесия неиз- [Выходные данные]