ПОИСК Статьи Чертежи Таблицы На рис. 123 представлено сопоставление расчетных и экспериментальных значений, отвечающих различным условиям нагружения. Наличие указанчой последовательности в изменении фрактальной размерности диссипативных структур отражает масштаб зоны процесса, непосредственно связанного с механизмом диссипации энергии. В этом смысле разрушение при ударном нагружении подобно усталостному, если реализуется один и тот же механизм диссипации энергии, контролирующий размер зоны процесса. Другой вывод, вытекающий из анализа иерархической последовательности бифуркаций, отраженный в диаграмме рис. 123, — неизбежность "разброса" экспериментальных данных по тре-щиностойкости материалов, определяемых в соответствии с рекомендациями линейной механики разрушения. (Слово "разброс" взято в кавычки, так как это естественное поведение трещины в точке бифуркации. В этой точке нельзя заранее предсказать, по какому пути пойдет система при переходе в новое состояние.) Понижение температуры и повышение скорости деформации приводит к сужению области абсолютных пороговых значений Ki , отвечающих предыдущему и последующему неустойчивым состояниям. Таким образом, испытания при пониженных температурах и высоких скоростях деформации для определения К 1с приближаются к испытаниям в подобных по микромеханизму разрушения условиях. Остается вопрос, как перейти от значений Kic при низкой температуре к значениям Ki при более высокой температуре или более высоких скоростях деформации. Установленное постоянство произведения Т = ЙГ <Ут позволяет выполнить такие пересчеты, если известны температурная и скоростная зависимости а,. [Выходные данные]