ПОИСК Статьи Чертежи Таблицы Уравнения (2.32) и (2.33) свидетельствуют об отсутствии критической ситуации, если первая производная в рассматриваемый интервал времени отлична от нуля. При равенстве ее нулю могут быть определены значения параметров уравнения эволюции, при которых достигается критическая точка бифуркации. Второе эволюционное уравнение показывает, какой является точка бифуркации. Возможны три сл} ая: вторая производная равна нулю, больше и меньше н} ля. Равенство второй производной нулю означает нейтральное положение системы, когда из неустойчивого она может стать устойчивой и наоборот. При положительной второй производной система находится в явно устойчивом положении. При отрицательной второй производной система находится в устойчивом положении, из которого ее можно вывести только за счет очень сильных возмущений. Примером последней ситуации может служить длительная задержка усталостной трепда- [Выходные данные]