Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

[<< Стр.]    [Стр. >>]

Рассмотрение взаимодействия солитонов в гл. 3 основывалось на возможности связать нелинейное уравнение КдФ с линейным одномерным уравнением Шредингера для стационарных состояний; решение и{х,1) уравнения КдФ играло роль потенциала в уравнении Шредингера, а время / рассматривалось как параметр. Эта техника позволила использовать известные свойства собственных значений и функций уравнения Шредингера. Успех метода был обеспечен открытием замечательного свойства этого уравнения, которое состоит в том, что спектр оператора Шредингера с потенциальной энергией, определяемой из уравнения КдФ, не зависит от времени. В результате этот спектр мог быть определен для всех моментов времени лишь при помощи начального условия и{х,0), взятого в качестве потенциальной функции уравнения Шредингера.

[<< Стр.]    [Стр. >>]

ПОИСК



Рассмотрение взаимодействия солитонов в гл. 3 основывалось на возможности связать нелинейное уравнение КдФ с линейным одномерным уравнением Шредингера для стационарных состояний; решение и{х,1) уравнения КдФ играло роль потенциала в уравнении Шредингера, а время / рассматривалось как параметр. Эта техника позволила использовать известные свойства собственных значений и функций уравнения Шредингера. Успех метода был обеспечен открытием замечательного свойства этого уравнения, которое состоит в том, что спектр оператора Шредингера с потенциальной энергией, определяемой из уравнения КдФ, не зависит от времени. В результате этот спектр мог быть определен для всех моментов времени лишь при помощи начального условия и{х,0), взятого в качестве потенциальной функции уравнения Шредингера.

[Выходные данные]

© 2025 Mash-xxl.info Реклама на сайте