ПОИСК Статьи Чертежи Таблицы Очевидно, что dN!d4 — вектор, ортогональный к поверхности запаздывания = 0. Следовательно, вектор Х<р (Ч Р) параллелен вектору dN/dW(p, ортогональному к поверхности запаздывания. Из этого свойства и уравнения (23.10) следует простое построение волновой поверхности, если известна поверхность запаздывания (ср. с рис. 29). Радиус-вектор волновой поверхности параллелен нормали Na к волновой поверхности. Связанные описанным способом поверхности обратны относительно радиуса. Трем ветвям поверхности запаздывания (23.2) соответствуют три ветви волновой поверхности (23.7). [Выходные данные]