ПОИСК Статьи Чертежи Таблицы Метод вспомогательной центроиды является основным при построении сопряженных профилей зубьев. Относительное движение колес сводится к качению без скольжения друг по другу центроид и Г[[ (см. рис. 6.31). При этом точка их касания Р является мгновенным центром вращения в относительном движении. Возьмем вспомогательную центроиду Цд, которую будем перекатывать без сколь-женвя сначала по центроиде Ц1, а затем по центроиде Цц. Положение вспомогательной центроиды Цд выберем таким, чтобы она соприкасалась с основными центроидами Ц и Цц в полюсе Р, являющимся мгновенным центром в относительном движении Цд и Ц[, а также Цд и Цц. Любая точка, например Р, связанная с вспомогательной центроидой, опишет при качении ее по Ц и Цц циклоидальные кривые. Эти кривые (как следует из теоремы Виллиса) должны касаться друг друга в такой точке, чтобы общая нормаль к этим кривым проходила через точку Р, являющуюся полюсом зацепления и мгновенным центром вращения в относительном движении двух центроид. Выполняя это условие, будем получать сопряженные профили, которые представляют собой рулетты, т. е. огибаемую и огиба[ощую при взаимном относительном качении центроиды Ц и Цц, или наоборот. [Выходные данные]