Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент главный экспериментальное определени

Работы [9.1—9.81 и литература, на которую встречаются ссылки в этих работах, содержат подробную информацию о конструкциях аэродинамических труб устройствах, создающих турбулентность измерении средних значений и пульсаций скоростей методах измерения давлений, сил и моментов, действующих на модели поправках на вторичные эффекты (такие как загромождение потока в аэродинамической трубе моделью и влияния державок на обтекание модели визуализации потока и обработке экспериментальных данных. Большая часть этого материала представляет интерес главным образом для специалиста, работающего в аэродинамической лаборатории, и поэтому здесь опущена. В данной главе будут рассмотрены отдельные аспекты проведения испытаний в аэродинамической трубе, имеющие более непосредственное отношение к проектировщику (например, какое влияние на моделирование отказа в аэродинамической трубе оказывает соблюдение определенных требований подобия) и приведены результаты ряда исследований, имевших целью получение данных, необходимых для проектирования сооружений.  [c.251]


Блестящих результатов в самых различных отделах механики достиг гениальный ученый Николай Егорович Жуковский (1847—1921), основоположник авиационных наук экспериментальной аэродинамики, динамики самолета (устойчивость и управляемость), расчета самолета на прочность и т. д. Его работы обогатили теоретическую механику и очень многие разделы техники. Движение маятника теория волчка экспериментальное определение моментов инерции вычисление пла нетных орбит, теория кометных хвостов теория подпочвенных вод теория дифференциальных уравнений истечение жидкостей сколь жение ремня на шкивах качание морских судов на волнах океана движение полюсов Земли упругая ось турбины Лаваля ветряные мельницы механизм плоских рассевов, применяемых в мукомольном деле движение твердого тела, имеющего полости, наполненные жидкостью гидравлический таран трение между шипом и подшипником прочность велосипедного колеса колебания паровоза на рессорах строительная механика динамика автомобиля — все интересовало профессора Жуковского и находило блестящее разрешение в его работах. Колоссальная научная эрудиция, совершенство и виртуозность во владении математическими методами, умение пренебречь несущественным и выделить главное, исключительная быстрота в ре-щении конкретных задач и необычайная отзывчивость к людям, к их интересам — все это сделало Николая Егоровича тем центром, вокруг которого в течение 50 лет группировались русские инженеры. Разрешая различные теоретические вопросы механики, Жуковский являлся в то же время непревзойденным в деле применения теоретической механики к решению самых различных инженерных проблем.  [c.16]

Для стержня круглого сечения при обтекании его потоком аэродинамический момент [Хахз не возникает, а аэродинамические коэффициенты с и l в определенных интервалах изменения числа Рейнольдса сохраняют постоянные значения [5, 6, 7]. При обтекании стержня некруглого поперечного сечения (рис. 6.9) при произвольной ориентировке одной из главных осей инерции сечения относительно направления вектора скорости потока vo возникают кроме сил q и Ql и аэродинамические моменты Ца- Из экспериментальных исследований обтекания стержней следует, что вектор fia может быть представлен в виде  [c.239]

Расчёт на последние три вида напряжений обычно не производится определение сопротивления рамы этим напряжениям производится экспериментальным путём [26]. Рамы легковых автомобилей обычно не рассчитываются даже и на изгиб. Оптимальная конструкция рамы легкового автомобиля подбирается экспериментально, главным образом с учётом обеспечения максимальной жёсткости конструкции при минимальном весе. Рамы грузовых автомобилей и автобусов проверяют на прочность для этого строят эпюру моментов, изгибающих лонжерон, при статическом действии сил и без учёта поперечин [55]. Длина лонжерона наносится в масштабе и на ней устанавливаются положения центров тяжести отдельных агрегатов, а также расположение опор лонжеронов (фиг. 138). Вес ifvsoBa можно считать равномерно распределённым по его длине. Полезная нагрузка для грузовых автомобилей при сравнительных расчётах также принимается равномерно распределённой по длине кузова для автобусов полезная нагрузка принимается распределённой согласно планировке кузова. Положения центров тяжести агрегатов определяют от заднего конца лонжерона. Размер а определяет свес кузова за раму.  [c.118]


Для определения предельных 1фивых текучести использовались ромбовидные пластины (рис. 11.7.2, б). Комбинация изгибающих моментов позволяла исследовать 5фивую текучести на всей плоскости главных напряжений. К числу недостатков относится сложность получения экспериментальных точек в первом и третьем квадрантах (для этого используется суперпозиция данных двух экспериментов), а также неравномерность напряжений по толщине образца.  [c.310]

На основании экспериментальных исследований представляется возможным разбить очаг деформации на четыре участка, как это представлено на фиг. 81, а, и рассматривать условия равновесия бесконечно малого элемента дес рмируемого объема в каждом из них. Решая дифференциальные уравнения равновесия совместно с уравнениями пластичности, соответствующими данному виду напряженно-деформированного состояния и используя граничные условия на каждом из сопряженных участков, можно решить задачу в замкнутом виде с установлением характера и величины напряжений в любой точке очага деформации. Знание закона распределения главны. напряжений по сечению деформируемого объема обеспечивает возможность решения ряда практических вопросов, к числу которых в первую очередь относится определение усилий, потребных для выполнения данной операции, а также определение напряжений в опасных местах рабочего инструмента. Наряду с этим, оказывается возможным проанализировать влияние основных технологических факторов на величины напряжений, возникающих в конечный момент деформирования и тем самым принять меры для создания оптимального силового режима при выполнении данной операции.  [c.145]

Экспериментальные исследования натурного образца проводились на вибростенде с ускорением 12—15 , расцентровкой полого вала 30 мм. Испытания показали, что ускорения колесной пары до 10—15 практически не передаются на остов ТЭД, динамический крутящий момент на валу якоря не превышает 800 Н-м. В динамических испытаниях привода на тепловозе ТЭП10-333 изучалось напряженное состояние упругих муфт привода — основного элемента, определяющего работоспособность конструкции. Максимальный крутящий момент при трогании с места достигает 8,5—8,7 кН-м, при этом деформация муфт составляет 0,135—0,145 рад. Жесткость муфты, определенная для этой деформации, 2,1-10 Н-м/рад (во время стендовых испытаний получена жесткость 2,26-10 Н-м/рад). Наибольшие напряжения в муфтах возникают в режиме боксования, т. е. при реализации крутящего момента по сцеплению. При работе на трех двигателях было получено боксование с развитием колебательных процессов (перемежающиеся боксования) и только при отключении пяти двигателей и нагружении одного полным током главного генератора получено нарастающее боксование, при этом измеряемые параметры характеризовались величинами, приведенными ниже.  [c.84]


Смотреть страницы где упоминается термин Момент главный экспериментальное определени : [c.40]    [c.446]    [c.123]   
Курс теоретической механики 1981 (1981) -- [ c.228 ]



ПОИСК



Момент главный

Момент главный (см. Главный момент)

Моменты главные

Определение моментов



© 2025 Mash-xxl.info Реклама на сайте