Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Олово Коэффициент линейного расширени

Коэффициенты линейного расширения у разных металлов также различны наибольшие — у цинка, свинца, алюминия, олова, наименьший — у железа.  [c.89]

Теплоемкость и коэффициент линейного расширения олова 01 (белого олова)  [c.59]

Поршень подбирают к цилиндру так, чтобы между юбкой и стенками цилиндров был минимальный зазор. Для исключения заклинивания на прогретом двигателе поршней из алюминиевого сплава при расширении в чугунных гильзах принимают ряд мер на юбке поршня делают разрезы различной формы (по всей длине, П- и Т-образные) в поперечном сечении юбке придается овальная форма, а в продольном — конусная в юбку вставляют компенсирующие вставки из материалов с малым коэффициентом линейного расширения, ограничивающие ее расширение направляющую часть юбки изолируют от более горячей части поршня холодильниками — местными углублениями, не соприкасающимися со стенками цилиндров. Для лучшей приработки к цилиндрам поверхность юбки поршня покрывают тонким слоем олова.  [c.26]


Мягкими припоями являются оловянно-свинцовые сплавы (ПОС) с содержанием олова от 18% (ПОС-18) до 90% (ПОС-90). Удельная проводимость этих припоев составляет от 9 до 13% удельной проводимости чистой меди, а температурный коэффициент линейного расширения равен (26 -ь 27) О град .  [c.311]

Несмотря на то что при аллотропических превращениях межатомные расстояния часто изменяются довольно заметно, атомные объемы и соответственно полные энергии различных модификаций, как правило, различаются мало. Но бывают и исключения. Например переход из р- в а-модификацию олова происходит с изменением типа связи от металлической к ковалентной и сопровождается резким изменением объема. Белое металлическое олово превращается в серый порошок, так как коэффициент линейного расширения серого олова в четыре раза больше, чем у белого. Это явление получило название оловянной чумы .  [c.119]

Во время работы двигателя больше всего нагревается головка поршня, поэтому диаметр ее делается обычно несколько меньше диаметра юбки. Уменьшение зазора между стенками цилиндра и юбкой поршня, помимо применения материалов с меньшими коэффициентами линейного расширения, обеспечивается также рядом конструктивных мероприятии охлаждением поршня и организованным отводом теплоты от днища, выполнением юбки конической формы с уменьшением диаметра кверху, применением поршней с разрезными и овальными юбками и т. п. Для лучшей приработки стенки алюминиевых и чугунных поршней часто покрывают слоем олова толщиной около 0,01 мм.  [c.70]

Для проверки правильности работы экспериментальной установки было проведено измерение плотности олова в твердом и жидком состояниях. Полученные величины коэффициента линейного расширения олова в твердом состоянии хорошо согласуются с имеющимися в литературе данными [И]. Среднее отклонение значений плотности, рассчитанное по полученным значениям а, от сглаживающей кривой составляет 0,02% при максимальном отклонении 0,05%.  [c.26]

Атомный номер олова 50, атомная масса 118,69, атомный радиус 0,158 нм. Известно 20 изотопов, стабильных и радиоактивных. Электронное строение [Kr]4rf 5s 5p . Электроотрицательность 1,4. Потенциал ионизации 7,332 эВ. Кристаллическая решетка при температуре ниже 13 °С серое а-олово с кубической решеткой типа алмаза с параметром 0=0,65043 нм, выше 13 °С белое -олово с тетрагональной решеткой с параметрами а = 0,58312 нм, с=0,31814 нм, с/о=0,546. Переход - в а-олово сопровождается увеличением объема и образованием кристалликов серого цвета (оловянная чума). Скорость превращения при ОХ 0,2 мм/сут и максимальная при —33 X. Контакт с серым оловом ускоряет превращение. Чистое белое олово без соприкосновения с серым может сохранить свою структуру до температуры —272 X. При длительном вылеживании при 20 X серое олово превращается в белое повышение температуры ускоряет процесс плавление способствует мгновенному переходу серого олова в белое. Плотность белого олова 7,295, серого 5,846 т/м . /пл = 232Х, /квп=2270Х. Температурный коэффициент линейного расширения при ОХ =21-10 К . Упругие свойства олова =55 ГПа, 0=17 ГПа.  [c.56]


Мягкими припоями в основном являются припои оловянно-свинцовые (марка ПОС) с содержанием олова от 18 % (ПОС-18) до 90 % (ПОС-90). Удельная про водимость этих припоев составляет 9—13 % удег(ьной проводимости стандартной меди, а температурный коэффициент линейного расширения а/ — (26—27)-10 К . Существуют также мягкие припои с добавками алюминия, серебра. Еще более легкоплавки припои, в состав которых входят висмут и кадмий. Они применяются там, где требуется пониженная температура пайки механическая прочность их очень незначительна. Висмутовые припои обладают большой хрупкостью.  [c.225]

А4агнитно-мягкие ферриты обладают всеми механическими свойствами керамики. Они тверды и хрупки, при спекании дают усадку от 10 до 20 % и совершенно не допускают обработку резанием. Ферриты хорошо шлифуются и полируются абразивными материалами. Для точной доводки размеров и для разрезания ферритовых изделий следует применять алмазные инструменты. Склейку следует производить клеем БФ-4 по общепринятой технологии. Поверхности можно спаивать оловянньпйи припоями при условии предварительного ультразвукового лужения их оловом (паяльник одновременно должен являться излучателем ультразвука). При расчете изделий из ферритов можно принимать следующие усредненные значения их механических и тепловых параметров модуль упругости на сжатие 150 ГПа коэффициент линейного расширения 10" 1/1 °С коэффициент теплопроводности  [c.190]

Предложены также способы коммутации, основанные на применении медленно затвердеваюш,их сплавов, таких, как сплавы галлия с медью, никелем, молибденом, что дает возможность исключить остаточные деформации и напряжения после изготовления и улучшить тепловой и электрический контакты. При перемешивании порошков этих металлов в галлии происходит их растворение и образование тугоплавких соединений, выпадающих в твердую фазу. Сплавы, содержащие 65% меди и 35% галлия, затвердевают при 25° С через 48 ч и пригодны для работы на воздухе при 250° С. Сплавы меди (50%), олова (18%) и галлия (32%) твердеют через 24 ч и пригодны для работы на воздухе до 700° С, имея коэффициент линейного расширения около 23 10" градус. Предложены подобные же сплавы на основе галлия и меди с содержанием от 33 до 82% серебра [23].  [c.100]

В дальнейшем чистый фторопласт в подшипниках был заменен композицией из смеси фторопласта и свинца, а стальная ленточная основа покрыта слоем олова против коррозии. Такие подшипники в виде втулок, упорных шайб и ленты выпускаются под названием гласир DU. Порошкообразная бронза состоит нз 89% меди и 11% олова, а матрица из этого порошка толщиной 0,25 мм соединяется со стальной основой спеканием. Заполненный фторопластом и свинцом антифрикционный слон имеет 70% бронзы, 25% фторопласта и 5% свинца. На наружной поверхности металлокерамической матрицы образуется слон нз фторопласта и свинца толщиной 0,02 мм, служащий для приработки в начальный период касания. Механизм поступления твердого смазочного материала в зону трения не отличается от описанного ранее для пористых металлокерамических подшипников, пропитанных фторопластом. Основные характеристики подшипникового материала гласир DU имеют следующие значения предел текучести 3100 кгс/см , коэффициент линейного расширения 15-10 1/°С, теплопроводность 0,1 кал/(с-см-°С). Подшипники гласир DU удовлетворительно работают при температурах от —192 до +280 °С. При этом предельно допускаемое давление достигает 300 кгс/см , а скорость скольжения 5 м/с. Рекомендуемый диаметральный зазор равен 0,004—0,014 от диаметра вала. Долговечность подщипников из материала гласир DU зависит от значений pv. Значения pv для минимального срока службы в 1000 и 10 000 ч приведены в табл. 34. Данные таблицы, относящиеся к малоуглеродистой стали, применимы также для чугуна, аустенитной нержавеющей стали и уг леродистых сталей с хромовым и никелевым покрытиями.  [c.127]


Смотреть страницы где упоминается термин Олово Коэффициент линейного расширени : [c.18]    [c.313]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.16 ]



ПОИСК



81, 82 — Коэффициенты линейного расширения 74 — Коэффициенты

Коэффициент линейного расширения

Коэффициент линейный

Коэффициенты расширения

Линейное расширение

Олово

Олово Линейное расширение

Олово и оловянные припои Теплоемкость и коэффициент линейного расширения олова



© 2025 Mash-xxl.info Реклама на сайте