Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Марганец Коэффициент линейного расширени

Марганец обладает неограниченной растворимостью в железе. Поэтому в железомарганцевых сплавах следовало бы ожидать с увеличением его содержания роста температурного коэффициента линейного расширения. Однако отмечается обратное явление. При увеличении содержания марганца от 11 до 32% температурный коэффициент линейного расширения уменьшается аномально, не подчиняясь правилу аддитивности (рис. 35).  [c.87]

Для коленчатых валов двигателей ЯМЗ-238 наиболее распространенный способ наплавки под слоем флюса не рекомендуется. Коленчатые валы двигателей ЯМЗ-238 изготовляют из стали 50Г. Марганец является карбидообразующим элементом, и образующиеся при наплавке карбиды повышают прочность, твердость, ударную вязкость и износостойкость наплавленного слоя. Между тем сталь 50Г плохо сваривается, имеет склонность к росту зерна при нагреве, повышенные усадку жидкого металла и коэффициент линейного расширения.  [c.116]


Кремний и марганец практически не оказывают влияния на коэффициент линейного расширения. Легирующие элементы, растворенные в феррите, снижают, а карбиды легирующих элементов повышают коэффициент линейного расширения.  [c.573]

Алюминий значительно изменяет термоэлектрические свойства никеля, повышает его электросопротивление, жаростойкость и существенно понижает температуру магнитного превращения никеля. Кремний главным образом повышает жаростойкость никеля. Марганец увеличивает его электросопротивление и жаростойкость, особенно в серосодержащей атмосфере. Хром в сильной степени повышает жаростойкость и жаропрочность никеля, увеличивает электросопротивление и снижает ТКС никеля. Медь повышает коррозионную стойкость и прочность никеля. Сплавы никеля с медью превосходят по коррозионной стойкости никель и медь. Сплав никеля с 30% меди монель отличается наИ лее в лсокой устойчивостью на воздухе, в пресной и морской воде и многих агрессивных средах. Железо снижает тем- пературный коэффициент линейного расширения никеля. Им можно частично заменить никель в жаростойких сплавах.  [c.455]

Марганец является элементом, все модификации которого обладают аномальными для чистого металла евойст- вами,— чрезвычайно высоким коэффициентом термического расширения и высоким удельным электросопротивле-лием. Марганец относится к переходным металлам с незаполненной d-оболочкой. Из всех элементов периодической системы элементов переходные металлы обладают наибольшими энергиями связи. Однако для марганца отмечается наличие глубокого минимума на кривых, изменения температур плавления, кипения и теплоты сублимации, модуля упругости, характеризующих энергию межатомных связей, температурного коэффициента линейного расширения и удельного электросопротивления переходных металлов в зависимости от положения их в периодической системе элементов [22, 23].  [c.18]

В состав минеральных (зольных) примесей могут входить главным образом железо, кремний, алюминий, щелочные и щелочноземельные металлы, а также тяжелые металлы (ванадий, хром, титан и марганец). Все эти примеси можно условно разбить на четыре группы 1) индифферентные, т.е. не оказывающие существенного влияния на процесс электролиза и качество металла (к ним относится алюминий) 2) не ухудшающие процесс электролиза и качество получаемого алюминия, но увеличивающие расход анода за счет каталитического действия (к ним относятся щелочные и щелочноземельные металлы) 3) улучшающие некоторые характеристики катодного металла, но на процесс электролиза и расход анода заметного влияния не оказывающие вследствие малого их содержания (характерными являются примеси тяжелых металлов, даже небольшие количества которых резко снижают электропроводность алюминия) 4) ухудшающие качество алюминия и повышающие расход анода (к ним относятся железо, снижающее коррозионную стойкость и пластичность алюминия и повышающее реакционную способность анода, а также кремний, уменьшающий теплсшроводность алюминия, пластичность и коэффициент линейного расширения и увеличивающий предел прочности).  [c.11]


У марганец-цинковых ферритов = 10 ом-см удельный вес 4—5 г1см , коэффициент линейного расширения 10 1°/С теплоем- кость и 0,17 кал/° С.  [c.303]

У марганец-цннковых ферритов е=102- -10 ом-см-, плотность 4,4ч-4,7 г/сл , коэффициент линейного расширения 10 1/°С теплоемкость 0,17 кал1г-град теплопроводность 4,19 вт м-град.  [c.241]

В промышленности применяются сплавы магния с марганцем, цинком, алюминием. Эти сплавы отличаются малым удельным весом (1,76—18 г см ) и достаточно высокими механическими свойствами (0(, = 21 -f 34 кГ/мм цри 6 = 8 н- 20%). Коэффициент теплопроводности магниевых сплавов лежит в пределах X = 0,18-г 0,35 кал см - сек - град, коэффициент линейного расширения а = 26-10 . Те1мпвратура плавления чистого магния равна 650°, оплавов магния 460—650°. Литейные магниевые сплавы МЛ-4, МЛ-5 и МЛ-6, содержашие от 5 до 11% алюминия, до 3% цинка и 0,1—0,5% марганца, термически упрочняются путем закал ки и последующего старения. Сплав МЛ-2 (1—2% марганца, остальное магний) и сплав МЛ-3 (2,5— 3,57о А1 0,5—1,5% Zn 0,15—0,5% Мп остальное — магний) упрочнению путем термообработки не подвергаются. Магний активно соединяется с кислородом, образуя пленку окиси MgO менее прочную, чем пленка окиси алюминия, и поэтому плохо зашищающую магниевые сплавы от коррозии. Марганец повышает коррозионную стойкость сплава и способствует получению мелкозернистой структуры. Химические составы и данные свариваемости магниевых оплавов приведены в табл. 27.  [c.246]

По мере увеличения содержания углерода и стали или легирующих элементов повышается чувствительность такой стали к температурному режиму сварки или наплавки. Углерод и почти все легирующие примеси при охлаждении стали замедляют процесс распада ауетенита. Первое место в этом отношении принадлежит углероду, а затем по убывающей степени располагаются хром, молибден, ванадий, марганец, медь, никель, кремний и др. В зависимости от количества этих элементов и скорости охлаждения стали в зоне термического влияния возможно образование смешанной структуры феррит—перлит— мартенсит или даже только структуры мартенсита. Таким образом, в зоне термического влияния появляются небольшие участки металла с различными механическими свойствами, разными коэффициентами линейного и объемного расширения. В результате металл этой зоны оказывается в условиях сложного напряженного состояния. Степень напряженности зависит от характера и объема структурных превращений в зоне термического влияния, от величины усадки металла шва, пластичности металла, жесткости изделия.  [c.248]


Смотреть страницы где упоминается термин Марганец Коэффициент линейного расширени : [c.79]    [c.633]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.16 ]



ПОИСК



81, 82 — Коэффициенты линейного расширения 74 — Коэффициенты

Коэффициент линейного расширения

Коэффициент линейный

Коэффициенты расширения

Линейное расширение

Марганец

Теплоемкость, коэффициенты теплопроводности и линейного расширения сталей углеродистых качественных конструкционных с повышенным содержанием марганца

Теплоемкость, коэффициенты теплопроводности и линейного расширения углеродистых конструкционных сталей обыкновенного качества и качественных сталей с нормальным содержанием марганца

Щелочные металлы и их сплавы, марганец и некоторые элемеи-, ты II группы Теплоемкость, коэффициенты теплопроводности и линейного расширения щелочных металлов и марганца



© 2025 Mash-xxl.info Реклама на сайте