Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

513 — Характеристики управляемые — Схема

В соответствии с принятой расчетной схемой и составленным математическим описанием проведены теоретические исследования на ВМ. Типичная осциллограмма, полученная для условий, близких к имевшимся при экспериментальном исследовании, представлена на рис. 2. Сопоставление теоретической и экспериментальной осциллограмм показывает, что принятая расчетная схема и составленное математическое описание достаточно полно отражают основные динамические свойства исследуемой системы и позволяют переносить результаты теоретического исследования на реальные системы. Проведенные теоретические исследования позволили получить более полные характеристики переходных и неустановившихся процессов, возникающих при разгоне и торможении системы, с учетом упругости жидкости и трубопроводов, выбраны рациональная последовательность работы и характеристики управляющей и регулирующей аппаратуры. Результаты исследований показали, что при наилучших параметрах тормозного режима клапана величина тормозного давления составляет 362 и 365 кгс/см , сила удара клапана о седло 6,7 и 5 т соответственно при закрывании и открывании клапана, имеют место отскоки клапана от конечных положений с последующими его ударами о седло или упоры, а в напорной магистрали во время торможения возникают динамические перегрузки. Теоретические исследования режима торможения клапана встроенным гидротормозом, закон изменения проходного сечения которого в функции перемещения поршня уточнен по результатам предварительных теоретических исследований, показали, что такой тормозной режим обеспечивает плавный подход и точную остановку клапана в конечном положении, причем давления в гидросистеме при торможении не превосходят номинальных.  [c.142]


На рис. 3.10, 3.11 приведены характеристики УС (затухание и ФЧХ) с включением Lp в центре управляющей полоски. Рис. ЗЛ 2 дает представление о регулировочной характеристике. В такой же последовательности рис. 3.16—3.18 отражают характеристики управляемой секции с изменяющимся активным сопротивлением Rp регулирующего элемента. Зависимости (рис. 3.13—3.15) затухания, фазы от частоты и фазы и затухания от величины емкости Ср регулирующего элемента, как расчетные, так и экспериментальные, построены для секции с теми же первичными параметрами и схемой включения регулирующего элемента. Из рис. 3.10,3.11 видно, что секция, управляемая индуктивностью Lp, является диспергирующей  [c.68]

Сущность принципа разомкнутого управления состоит в том, что алгоритм управления строится только на основе заданного алгоритма функционирования и в последующем не корректируется в зависимости от фактического значения управляемой величины. Схема управления (рис. 6.1.2), построенная по заданному принципу, имеет вид разомкнутой цепи блок управления БУ приводится в действие задатчиком алгоритма функционирования ЗАФ [сигнал д( )] и воздействует на объект управления [сигнал и( )] так, чтобы значения управляемой величины уЦ) были равны или близки к значениям д г), задаваемым алгоритмом функционирования. Близость значений и у( ) обеспечивается жесткостью характеристик элементов схемы. При действии возмущений f точность работы системы, построенной по данному принципу, снижается.  [c.878]

Поскольку быстродействие управляющего золотника намного превыщает быстродействие других звеньев системы, то при моделировании вместо блок-схемы фиг. 10.24 можно пользоваться блок-схемой фиг. 10.25, в которой учтены только статические характеристики управляющего золотника.  [c.410]

В структурной схеме источников серии ВСП (рис. 84) имеются следующие блоки трансформатор Т с жесткой характеристикой, управляемый выпрямитель В, обеспечивающий функции формирования внешней характеристики и стабилизации сварочного тока, б.юк возбужде-  [c.98]

Такая схема, кажущаяся па первый взгляд сложной, обеспечивает вторичные импульсы, параметры которых определяются характеристикой управления тиристора (рис. 4.9). На этом рисунке кривые А w Б определяют разброс вольтамперных прямых диодных характеристик управляющего р-п перехода тиристоров данного типа. Горизонтальные штриховые прямые определяют наибольшее значение минимально необходимого напряжения, а вертикальные — наибольшее значение минимально необходимого тока для отпирания любого тиристора данного типа (при разной температуре окружающей среды).  [c.177]

Из опыта эксплуатации кулачковых и торсионных пластометров и задач, которые стоят в области изучения реологических свойств металлов и сплавов для процессов ОМД, можно определить требования, которым должны удовлетворять современные установки подобного типа - 1) широкий регулируемый скоростной диапазон испытаний в пределах 0,01—500 с 2) возможность получения больших степеней деформации (испытания на плоскую осадку, кручение) 3) возможность воспроизведения самых различных, заранее программируемых и управляемых с помощью ЭВМ законов нагружения как за один цикл испытаний, так и при дробном деформировании 4) возможность записи кривых релаксаций в паузах между нагружениями с длительностью пауз от 0,05 до 10 с 5) фиксация структуры металла с помощью резкой закалки образца в любой точке кривой течения 6) оснащение установок высокотемпературными печами для нагрева образцов до 1250 °С в обычной среде и в вакууме или среде инертного газа до 2000—2200 °С 7) возможность воспроизведения при испытаниях, особенно дробных, различных законов изменения температуры металла, фиксация температуры образца с помощью быстродействующих пирометров 8) возможность проведения испытаний не только при одноосных схемах напряженного состояния, но и в условиях сложнонапряженного состояния, особенно при исследовании предельной пластичности 9) обеспечение высоких требований по жесткости машин, по техническим характеристикам измерительной и регистрирующей аппаратуры, возможность стыковки с ЭВМ (УВМ) для автоматизированной обработки данных и управления экспериментом.  [c.49]


Весьма широкое распространение получили в 40-х годах управляемые ионные приборы — тиратроны, позволяющие производить включение и выключение (а в некоторых специальных схемах — и плавное регулирование) весьма значительных мощностей путем подачи управляющих сигналов малой мощности. Развитие этих приборов в послевоенные годы шло в направлении увеличения их стабильности и уменьшения ширины пусковой области, для чего первоначально применявшееся наполнение ртутными парами было заменено наполнением инертными газами. Для уменьшения сеточного пред-разрядного тока была применена специальная конструкция электродов, препятствующая оседанию активного вещества, испаряющегося с катода, на сетку. Были разработаны экранированные тиратроны, в которых путем введения дополнительного электрода удается изменять по желанию положение пусковой характеристики. Путем придания особой формы сетке и другим электродам удалось значительно повысить допустимую величину анодного напряжения (до нескольких киловольт), при котором сетка сохраняет управляющее действие. Разработка этих приборов велась заводскими лабораториями, а также лабораториями некоторых отраслевых институтов (например, ВЭИ).  [c.245]

Адаптивные системы активной амортизации. Адаптивными называются такие системы активной амортизации, параметры которых (амплитудные и фазовые характеристики обратных связей) могут изменяться в процессе работы таким образом, чтобы обеспечить минимум передачи вибраций от машины в фундамент и прилегающие конструкции. На рис. 7.23 в качестве примера приведены две схемы адаптивных систем активной амортизации. Помимо элементов, составляющих схему активной амортизации на рис. 7.21, а, в них включены дополнительные блоки — оптимизатор 9 и источник управляющих сигналов 10. Оптимизатор — принципиально новое функциональное устройство, отличающее адаптивные схемы управления  [c.243]

Погрешность, вносимая приводом подач, в большой степени определяется количеством элементов, включенных между управляющим устройством и исполнительным органом станка. Условно назовем эту характеристику длиной блок-схемы привода. Шаговые приводы подачи имеют наиболее короткую блок-схему, но при этом у них отсутствует контроль действительных перемещений исполнительного органа в процессе обработки, что существенно снижает предельные возможности привода. Несмотря на это, большая часть станков с ЧПУ средней точности оснащается шаговыми электрогидравлическими приводами, наиболее отработанными в настоящее время.  [c.119]

Характерной особенностью этих схем является наличие дополнительного источника силы — вибратора, управляемого в линейном режиме сигналом вибродатчика. Действие вибратора эквивалентно изменению некоторого параметра — жесткости, массы или коэффициента трения. При определенных условиях имеет место устойчивое гашение вибрации в некоторой достаточно широкой полосе частот. Полоса виброгашения и максимально достигаемый коэффициент электромеханической обратной связи ограничены условиями устойчивости. Устойчивость определяется частотными характеристиками источника вибрации, изолируемого объекта и цепи управления.  [c.61]

Частотная характеристика требуемой степени гашения в частотном диапазоне возмущающих сил. Этот важный критерий, определяющий подходящий тип активных виброизоляторов, при использовании электромеханических систем определяет способ установки вибратора (по схеме рис. 1 или 2), позволяет выбрать управляющий параметр (виброперемещение, скорость, силу [ или f + /а), а также частотные характеристики элементов активной цепи. Очевидно, устойчивость системы должна обеспечиваться на всех частотах, в пределах и за пределами частотного диапазона эффективного виброгашения.  [c.67]

Модульная самоориентирующаяся головка может быть выполнена по схеме с поворотным датчиком, ось которого устанавливается вдоль фактической нормали с помощью подпружиненного мостика, например, по типу центрирующего мостика нутромера. Наконец, управляемая модульная головка может быть собрана из датчика и привода его поворота, работающего по программе. Такая головка будет измерять отклонение вдоль нормали к теоретическому профилю. Определив величину модуля из показаний датчика и угол поворота из программы, получим полную характеристику вектора отклонения.  [c.208]

Управляющий сигнал создается задатчиком усилителя, электрическая часть которого выполнена ио мостовой схеме, а фазовые характеристики совпадают с такими же характеристиками дифференциально-трансформаторных датчиков, благодаря чему сигнал от вторичных обмоток датчиков может суммироваться с сигналом от задатчика.  [c.118]

Определение динамических характеристик объекта по основным каналам возмущающих и управляющих воздействий при различных нагрузках. Результаты моделирования представляют информацию для последующего проектирования систем управления. В частности, по результатам моделирования оиределяется структурная схема системы управления, выбираются наиболее представительные импульсы, управляющие воздействия, определяются параметры настройки основных регуляторов для типовых систем регулирования питания, топлива, температуры перегрева. Для этой цели достаточно построить детерминированную линейную модель парогенератора, ограниченную по пароводяному тракту питательным насосом и регулирующими клапанами турбины. Модель должна включать также тракт вторичного пара от выхода из ЦВД до возврата в турбину.  [c.64]


Рабочим органом крутильного нагружателя является гидравлический насос 14, вал которого соединен со шпинделем испытываемого станка 15. Величина крутящего момента на валу нагрузочного насоса 14 задается настройкой предохранительного клапана 16, установленного в напорной магистрали нагрузочного насоса. Пульсирующий крутящий момент создается при возвратно-поступательном движении управляющего золотника 17, соединяющего напорную магистраль нагрузочного насоса то со сливом, то с напорной магистралью насоса питания 18, давление в которой предохранительным клапаном 19 устанавливается равным наибольшему давлению в напорной магистрали нагрузочного насоса. Такая схема обеспечивает компенсацию утечек в нагрузочном насосе и его магистралях и улучшает динамические характеристики нагружателя. Клапан 20 позволяет установить требуемую асимметрию нагрузки, а клапан 21 устанавливает в сливной магистрали давление, необходимое для самопитания нагрузочного насоса 14.  [c.149]

Электрическая часть системы регулирования (рис. IX.4) включает ряд функциональных блоков, формирующих основные управляющие сигналы. На схеме приведены характеристики нелинейных звеньев. Схема построена таким образом, что все сигналы, остающиеся в равновесных режимах, пере-  [c.158]

Новыми элементами в схеме являются лишь нелинейный задатчик скользящего давления НЗ и регулятор мощности РМ с задатчиком Зд, использующий в качестве управляющего сигнала косвенный параметр — давление ррс в камере регулировочной ступени турбины. Эти элементы выполнены на базе серийно выпускаемых приборов. В качестве задающего выбран сигнал по расходу пара (по рРс)- Реализация комбинированной программы регулирования, при которой блок в одном диапазоне режимов работает при СД, а в других —при ПД, производится задатчиком с нелинейной характеристикой.  [c.168]

Наибольшее распространение в машиностроении получили однокоординатные гидравлические следящие приводы дроссельного управления благодаря исключительной простоте их конструкции и высокой надежности в эксплуатации. Эти приводы, состоящие из комбинаций различных управляющих дроссельных золотников и гидродвигателей, могут вместе с тем рассматриваться в качестве типовых звеньев, лежащих в основе всех существующих гидравлических следящих приводов. Принцип действия и методы построения схем таких приводов рассматриваются в главе П. Далее в ней приводятся статические и динамические характеристики основных элементов этих приводов и рассматриваются вопросы устойчивости и качества регулирования приводов в виде линеаризованных моделей в основном по классическому методу с использованием передаточных функций. Такой метод позволяет наиболее простыми средствами исследовать динамику сложных следящих приводов, описываемых дифференциальными уравнениями высоких порядков. Глава включает методику расчета следящих приводов дроссельного управления и примеры конкретных станочных копировальных приводов.  [c.4]

Однако в приводах с однощелевым управляющим золотником, построенных согласно схеме на рис. 3.4, наблюдаются явно выраженные несимметричные автоколебания, что видно из осциллограммы на рис. 3.11. Несимметричность автоколебаний вызывается известной несимметричностью нелинейной статической характеристики однощелевого золотника при работе его в этом приводе (см. 2.3).  [c.116]

Экспериментальная чa тotнaя характеристика очень близка к (8.7.35), как показано на рис. 8.13. Из такой кривой можно оценить с точностью порядка 1 не. Необходимо иметь в виду, что на эквивалентной схеме рис. 7.12 /, -- ток, текущий только через гЪ и Сд. Эта ве. 1ичина не учитывает составляющей тока, текущего через j. Характеристика управляющей схемы люжет быть причиной изменения в зависимости от частоты, что приведет к падению мощности излучения на частотах выше 1 2лт ,.  [c.236]

Для получения более полных характеристик переходных и неустановившихся процессов, возникающих при разгоне и торможении системы с учетом упругости жидкости и трубопроводов, уточнения предложенного закона изменения проходного сечения встроенного гидротормоза, назначения оптимальной последовательности работы и характеристик управляющей и регулирующей аппаратуры, выбора оптимальных характеристик и разработки методов расчета систем такого типа выполнены теоретические исследования, в которых расчетная схема гидропривода (рис. 3) принята в виде четырехмассовой системы с упругими связями одностороннего действия. Масса 9 представляет собой суммарную массу вращающихся частей насосного агрегата, масса Шд — приведенную к поршню массу связанных с ним деталей и части жидкости гидросистемы, массы и Шз — эквиваленты распределенной массы жидкости в трубопроводах гидросистемы. Упругие связи гидросистемы обусловлены податливостью жидкости и трубопроводов. Система находится под действием концевых усилий электродвигателя Рд, подпорного клапана Рп и приложенных в промежуточных сечениях упругих связей сил сопротивления ДР,, величины которых зависят от расходов жидкости через соответствующие сечения гидросистемы. В сечениях 1 и 8 прикладываются силы сопротивления, возникающие при протекании жидкости через проходные сечения электрогидравлического распределителя. После подачи команды на перемещение золотника распределителя площади указанных проходных сечений изменяются во времени от нулевой до максимальной. В сечениях Зяб прикладываются силы сопротивления, возникающие при протекании жидкости через автономные дроссели, проходное сечение которых изменяется от максимального до минимального, обеспечивающего ползучую скорость поршня в конце хода и обратно, в зависимости от пути поршня на участке торможения и разгона.  [c.140]

При проектировании СНС вопрос об уровне априорной информации, из которого исходит конструктор, приобретает первостепенное значение. Одно из основных направлений в разработке схем СНС с применением вычислительных устройств связывалось с двуступенчатым построением системы. При этом вычислительное устройство производит определение динамических характеристик управляемого объекта по данным его нормальной работы (входная и выходная величины объекта), т. е. его идентификацию, а устройство управления, используя полученпую информацию, организует соответствующее управление объектом в некотором замкнутом контуре [8, 9]. Но такое построение отличается громоздкостью, иногда неоправданной.  [c.3]

Остановимся кратко на описании алгоритма и программы расчета параметров управляемых устройств с неоднородной структурой [72, 105]. Программа ANALIZ (язык FORTRAN) позволяет рассчитывать частотные характеристики управляемых устройств при заданных первичных параметрах, длинах связанных линий секций, а также параметрах эквивалентной схемы регулирующих диодов н других данных в зависимости от конкретной задачи.  [c.122]

Рнс. 7-36. Чсты )схсло11ная структура тиристора. Схема для снятия характеристик управляющего электрода.  [c.191]

Разрабатывают выпрямители с использованием в выпрямляющих силовых обмотках управляемых вентилей-тиристоров. Схема управления тиристорами обеспечивает необходимый вид внешней характеристики, широкий диапазон регулирования силы сварочного тока и стабильность его при колебаниях наиражения питающей сети (ВД-304).  [c.133]


С целью исключения непосредственного выброса картерных газов в атмосферу применяют замкнутые системы вентиляции картера. Сжигание картерных газов в цилиндрах позволяет снизить суммарный сброс С,до 20% по сравнению с выбросами при открытой системе вентиляции. Возможны различные схемы таких систем — с возвратом картерных газов перед воздушным фильтром, перед дроссельной заслонкой и за ней. Предпочтительным является первый вариант, так как при этом не изменяется закон разрежения, управляющий приготовлением смеси в карбюраторе. Кроме того, картерные газы фильтруются от твердых частиц и масляных капель. Если не обеспечить надежную фильтрацию картерных газов при их возвращении в цилиндры двигателя, то вследствие попадания масляных капель в высокотемпературную зону сгорания образование ПАУ увеличивается, выбросы бенз(а)пирена могут возрасти в десятки раз. Таким образом, неверно сконструированная или плохо функционирующая закрытая система вентиляции картера может ухудшить токсические характеристики двигателя по сравнению с открытой системой.  [c.13]

Структуру системы управления движением промышленного робота можно проследить по схеме, приведенной на рис. 18.4, отражающей определенные уровни управления. На первом уровне автоматизированные приводы для всех степеней подвижности обеспечи-ванэт движение исполнительных звеньев и механизмов робота в пределах рабочей зоны с помощью управляющих программ по каждому частному циклу. Информация о положении исполнительных звеньен, характеристиках внешней среды и объекта манипулирования вырабатывается датчиками и по каналам обратной связи передается оператору или в специальные устройства более высоких уровней управления для внесения коррективов в движение, если в этом возникает необходимость. Формирование сигналов управления движением приводов и устройствами автоматики обычно осу-  [c.481]

Тиристор — электропреобразовательный полупроводниковый прибор с тремя или более р—п переходами, в вольтамперной характеристике которого имеется участок отрицательного дифференциального сопротивления и который используется для переключения тиристоры получили широкое распространение в управляемых выпрямителям и в схемах регулируемого привода различают тиристоры диодные и триодные (3, 10].  [c.156]

Особенностью схемы бесхвостка является существенный вклад в создание подъемной силы аппарата органов управления, определяемый величиной Уд ба. Для такого аппарата характерно отсутствие скосов потока, снижающих эффективность рулей и крыльев. Использование рулей на горизонтальных крыльях делает более надежным управление по крену, так как исключается возможность обратного влияния крена. Статическая устойчивость практически независима от движения по тангажу, рысканию и крену. Летательные аппараты, выполненные по схеме бесхвостка , могут иметь неуправляемое оперение, расположенное как впереди, так и позади центра масс. Необходимость в таком оперении возникает при стремлении улучшить характеристики устойчивости и демпфирования. На рис. 1.13.6,6 показано, что летательный аппарат имеет в носовой части неподвижные поверхности 3, выполняющие функции дестабилизаторов, которые уменьшают чрезмерную статическую устойчивость, придаваемую сильно развитой хвостовой несущей поверхностью. Дестабилизатор одновременно играет роль демпфирующего устройства. Кроме того, отсутствие изолированного управляющего оперения уменьшает лобовое сопротивление. По этой же причине крыло не испытывает неблагоприятного воздействия скоса потока.  [c.117]

ПРИНЦИПИАЛЬНАЯ СХЕМА КОНТРОЛИРУЕМОГО ОБРАЗОВАНИЯ СУБСТРУКТУРЫ. Рассмотрим образование субструктуры с заданными характеристиками (параметрами), т. е. с заданными размерами субзерен (ячейки) б и их углами разориентировки 0. Такое управляемое (или контролируемое) структурообразо-вание можно построить на основе имеющихся экспериментальных данных о зависимости основных характеристик субструктуры от степени деформации, температуры, времени выдержки между последовательными этапами деформирования и др.  [c.256]

Соответствующий сигнал обратной связи после нормирующего усилителя 5 понадает на блок сравнения 10, где сравнивается с сигналом, поступающим от источника командного сигнала II. Разность между сигналами усиливается в блоке 10 и служит управляющим сигналом для ЭГР 2. В тех случаях, когда это возможно, внутрь образца 4 помещают заполнитель (на схеме не показан), который помогает уменьшить рабочие объемы масла и, следовательно, повысить динамические характеристики системы.  [c.76]

При диагностировании гидросистемы контролируются параметры пл — угловая скорость планшайбы — давление у насоса — давление на входе гидромотора Qq — расход насоса Ок.вых — расход на сливе предохранительного клапана Мгм — момент на валу гидромотора Рзаж, раз — давления в системе зажима и разгрузки планшайбы соответственно . Si зол и б зоя — перемещения золотников гидропанели. Знак + свидетельствует о том, что величины указанного параметра находятся в пределах, близких к нормальным знак — указывает на значительное отклонение параметра от нормальных значений. Анализ данной схемы подтверждает, что при выполнении проверок и измерении указанных параметров представляется возможным обнаружение основных дефектов. На схеме основная цепочка работоспособности проходит но линии параметров СОпл дв, Pi, Рзат, Р раз, Мгм- в этом случае гидравлическая и электрическая системы работоспособны и дефекты находятся в механической системе стола. Обозначенные связи предлагают возможную последовательность поиска дефектов гидросистемы поворотного стола. Для дальнейшего поиска дефектов и анализа работоспособности гидросистемы целесообразно провести проверку электрической системы. При наличии нескольких конечных выключателей ВК, электромагнитов, реле давлений и электрических реле, управляющих работой электропривода и гидроаппаратуры, а также взаимных блокировок, полная схема диагностических проверок представляется достаточно сложной. Однако, для обнаружения причин отсутствия функционирования может использоваться упрощенная схема, показанная на рис. 3, б. Наличие дефектов механической системы стола может быть выявлено проверкой по схеме рис. 3, в. Однако выявление и интерпретирование дефектов механической системы при нефункционирующем объекте усложнено отсутствием контроля необходимых параметров, и в ряде случаев необходима частичная разборка узла или замена некоторых механизмов. Функционирующий стол может быть работоспособен и неработоспособен. Неработоспособный стол характеризуется выходом за допустимые пределы основных параметров, т. е. наблюдается потеря точности, быстроходности, а также значительно возрастают нагрузки в приводе и механизме фиксации. Потеря точности зависит от следующих факторов нестабильности скорости планшайбы в момент фиксации Дшф, нестабильности давления в системе поворота ДРф и разгрузки АР раз, наличия зазоров в механизме фиксации и центральной опоре, нестабильности характеристик жесткости упоров и усилий фиксации. Потеря быстроходности зависит от расхода Q и давления в системе поворота Р и разгрузки Рраз. от наличия колебательного движения планшайбы, характеризуемого коэффициентом неравномерности — б , и от длительности процесса торможения <тор- Высокие динамические нагрузки в приводе и механизме фиксации F определяются величинами скорости поворота и фиксации, давлением в системе поворота и разгрузки,  [c.86]

В (Машиностроении используется схема с управляемым насосом и неуправляемым гидродвигателем [1] (аналогичная электродвигателю с независимым возбуждением), статическая характеристика которой при отсутствии потерь, постоянной KOpO THj приводного двигателя = onst и наибольшем возможном (определяется настройкой предохранительного клапана) перепаде давления р показана на рис. 2 в виде закономерностей  [c.118]

Существенное сближение величин JVy и ТУд с уменьшением весов и габаритов более чем в два раза, достигается применением нескольких гидромоторов с переключением их из последовательного соединения на параллельное. Еще большее сближение тех же величин достигается применением составных гидромоторов [31. Очевидно, кардинальное решение достигается применением нерегулируемого насоса с управляемым гидромотором (аналогично электродвигателю с последовательным возбуждением). Однако ограничиваться только статической характеристикой при оценке новой схемы силового электрогидропривода без анализа ее динамических свойств не следует.  [c.119]

Упругая подвеска гасителя в виде силового сильфона 4 и управляющего сильфона 9 с учетом реакции струи из сопла 11 имеет нелинейную характеристику восстанавливающей силы. Кроме того, в реальной системе имеет место демпфирование, трудно поддающееся расчету. Поэтому необходимо провести экспериментальный анализ фазовых характеристик элет ментов гасителя. На рис. 4 приведены фазочастотные характеристики элемента сопло — заслонка — силовой цилиндр (силовой части системы) при разных значениях диаметра сопла d и диаметра дросселя Тд, полученные экспериментально на стенде, схема которого приведена на рис. 5 Колебания давления в силовом цилиндре регистрировались фольговым  [c.214]

С целью обеспечения правильного применения элементов для конструкторов, занимающихся анализом схем и конструкций, должны быть организованы технические консультации. Необходимо обеспечить получение информации по программе обмена данными по управляемым ракетам (GMDEP), межведомственной программе по обмену данными (IDEP) и от центра по исследованию надежности электронных элементов института им. Беттела и установить порядок распределения этой информации. Необходимо подготовить и систематически вести квалификационный перечень эле.ментов, в котором указываются тип элемента, номинальные значения его параметров, рабочие характеристики и технические условия на поставку и рекомендуемые поставщики.  [c.285]


Алгоритм функционирования модуля навигации и адаптивного управления иллюстрируется блок-схемой, представленной на рис. 6.11. Для проверки адаптационных возможностей этого модуля в экспериментах по моделированию на ЭВМ управляемых движений робота Адап-трон-1 в широких пределах варьировались как важнейшие динамические характеристики шасси и приводов, так и свойства среды. Изменению подвергались нагрузка на шасси, питающее напряжение приводов, характер грунта, расположение препятст-  [c.202]

В приборе ВБП-5 применен автоматически настраивающийся фильтр, основанный на применении фазочувствительного детектора с прямоугольным управляющим напряжением, который действует аналогично ваттметровой схеме. Остальные тех,нические характеристики прибора не отличаются от таковых прибора ВБП-4. Принципиальная схема прибора ВБП-5 приведена на фиг. 3, а внешний вид изображен на фиг. 4.  [c.531]

Насос 9, питающий гидродвигатель /, приводится во вращение от асинхронного электродвигателя. Производительность насоса регулируется поворотом его блока относительно корпуса. Число оборотов выходного вала гидродвнгателя I зависит от угла поворота цилиндрового блока насоса. Угол наклона блока гидродвигателя не регулируется, его крутящий момент постоянный и определяется настройкой предохранительных клапанов в клапанной коробке 10 на давление, превышающее в 4 раза давление, необходимое для развития номинального крутящего момента, что обеспечивает высокую жесткость механической характеристики гидропривода. Гидродвигатель 1 и насос 9 соединяются трубопроводами по замкнутой схеме. Нерегулируемый щестеренчатый насос 7, примененный для подпора и покрытия утечек, которые могут произойти в насосе 9, гидродвигателе и соединяющих их трубопроводах, приводится во вращение от того же электродвигателя, что и насос 9. Нагнетаемая этим насосом рабочая жидкость подается под давлением, устанавливаемым клапаном 6, через фильтр 5 к управляющему золотнику 4, а также к клапанной коробке 10.  [c.414]

В книге рассмотрены гидравлические и электрогидрав-лические следящие приводы с дроссельным и объемным управлением, приведены методики расчета их статических и динамических характеристик и приближенные методы решения задач устойчивости с учетом нелинейностей путем их гармо-нической линеаризации. Освещены вопросы построения схем и конструкций специальных гидравлических систем для работы при больших скоростях слежения, при скоростях, изменяющихся по заданной программе, и при синхронизации движений, а также явления, связанные со спецификой конструкций и действия электрогидравлических преобразователей. Даны рекомендации по расчету электромагнитных управляющих элементов. Приведены результаты исследования быстродействующих следящих приводов с гидроусилителем сопло-заслонка, в том числе при использовании в управлении принципа широтно-импульсной модуляции, и изложена методика их расчета.  [c.2]

Рассмотрим движение типового гидравлического следящего привода, схема которого показана на рис. 3.1, с четырехщелевым управляющим золотником, имеющим в среднем положении открытые щели шириной ho, при сообщении ему на вход возмущающего воздействия х. Сначала исследуем привод при совместном учете двух видов нелинейностей — нелинейности вида насыщения перепада давления во внешней цепи управляющего золотника p h, q) и нелинейности сухого трения в направляющих рабочего органа Т(ра). Первую из них учитываем в виде статической характеристики, показанной на рис. 3.6,6, а вторую—на рис. 3.5, в.  [c.131]


Смотреть страницы где упоминается термин 513 — Характеристики управляемые — Схема : [c.52]    [c.376]    [c.462]    [c.123]    [c.160]    [c.166]    [c.364]    [c.654]    [c.177]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.518 ]



ПОИСК



Схемы Характеристики

Управляемые ТТ

Функциальные схемы и основные характеристики промышленных полупроводниковых управляемых систем возбуждения синхронных двигателей



© 2025 Mash-xxl.info Реклама на сайте