Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластмассы Свойства диэлектрически

Пластмассы имеют в настоящее время важнейшее значение в народном хозяйстве. Применение пластмасс связано с их ценными физико-механическими свойствами — диэлектрической прочностью, стойкостью к агрессивным средам, прозрачностью, малым весом, высокой механической прочностью.  [c.143]

Полистирольные пленки. Преимуществом полистирольных. пленок перед любыми другими полимерными пленками являются их высокие диэлектрические свойства. Диэлектрические потери таких пленок меньше, чем у других пластмасс, диэлектрическая проницаемость при разных частотах составляет 2,4— 2,6. Полистирольные пленки нашли широкое применение в электротехнической и электронной промышленности. Кроме того, они применяются в цветной фотографии и для упаковки пищевых продуктов.  [c.159]


Характерными для пластмасс свойствами являются относительно малая плотность — 1-2,5 г/см (исключая композиции с тяжелыми наполнителями), а для пенопластов до 0,01 г/см , низкая теплопроводность, высокие диэлектрические свойства и электрическая прочность, высокая коррозионная и химическая стойкость, хорошие технологические свойства (легкость шприцевания — экструзии, литья, прессования, сваривания и склеивания, обработки резанием).  [c.157]

Диэлектрические свойства пластмасс зависят от наполнителей, связующих веществ и их полярности. У пластиков различают неполярные (нейтральные) и полярные диэлектрики.  [c.345]

По диэлектрическим свойствам (о чем говорилось ранее) пластмассы подразделяются на неполярные (нейтральные) и полярные.  [c.345]

Наряду с небольшим объемным весом (40—350 кг м ) пластмассы этой группы обладают хорошими диэлектрическими свойствами, низкой звуке- и теплопроводностью, достаточной вибростойкостью (рис. 19.20).  [c.364]

Пластмассы обладают такими преимуществами по сравнению с металлами, как сравнительно невысокая стоимость, легкость, химическая инертность и диэлектрические свойства, но им присущи более низкая механическая прочность, пластичность, подверженность воздействию тепла и света. Нанесение металлических покрытий на пластмассы дает возможность получить сложный материал, который может найти применение, например, в легкой промышленности для изготовления товаров широкого потребления.  [c.100]

Развитие современной техники предъявляет высокие требования к изделиям машиностроения с точки зрения снин<ения веса конструкций, повышения их долговечности, надежности, производительности. Одним из эффективных путей решения этой проблемы является широкое использование синтетических материалов (пластмассы, синтетические смолы, синтетический каучук, химические волокна, лаки и краски) в машиностроении. Среди полимеров наибольшее распространение в качестве конструкционного материала получили пластмассы. Ценные физико-механические, химические, диэлектрические, оптические и другие свойства давно превратили пластмассы из заменителей черных и цветных металлов в самостоятельные конструкционные материалы, которые успешно конкурируют с традиционными материалами. Благодаря своим свойствам, пластмассы стали важным фактором ускорения технического прогресса во всех областях новой и новейшей техники.  [c.210]

Немного раньше, чем капрон, в машиностроение стал внедряться текстолит — пластмасса, представляющая многослойную ткань, пропитанную резольной смолой и спрессованную под большим давлением при 150° Ц. Она отличается большой механической прочностью и высокими диэлектрическими свойствами. В то время как каждый квадратный сантиметр чугунного вкладыша может выдерживать нагрузку в 15—25 кг, есть такие текстолитовые подшипники, которые выдерживают нагрузку в 2 500 кг/см . Миллион килограммов нагрузки может воспринять текстолитовый подшипник, имеющий диаметр 160 мм и длину 250 мм  [c.164]

Физико-механические и диэлектрические свойства некоторых целлюлозных пластмасс приведены в табл. 60.  [c.119]

Ценными свойствами для машиностроения обладают пластмассы — неметаллические материалы на основе природных или синтетических полимеров. Они отличаются низким удельным весом, высокими химической стойкостью, антифрикционными свойствами, износостойкостью и диэлектрическими характеристиками, хорошими ударной прочностью, фрикционными свойствами, обрабатываемостью и другими свойствами.  [c.257]


Общая характеристика пластмасс. Различные пластмассы обладают рядом достоинств низкой плотностью, химической стойкостью, высокой удельной прочностью и износоустойчивостью, фрикционными или антифрикционными свойствами, хорошими диэлектрическими характеристиками, тепло- и звукоизоляционными свойствами. Детали в большинстве случаев получают методами прессования, экструзии или литья, которые характеризуются высокой производительностью и высоким коэффициентом использования материала. При правильном выборе и применении пластмасс снижается вес машин, повышается их надежность и долговечность, снижается трудоемкость изготовления и стоимость.  [c.80]

Широкое применение нашли клеи на основе эпоксидных смол. Для них характерна высокая механическая прочность, стойкость к действию воды, топлив и минеральных масел, хорошие диэлектрические свойства. Эпоксидные смолы характеризуются хорошей адгезией практически ко всем материалам, могут работать в широком интервале температур, претерпевают очень малую усадку при отверждении. Эпоксидные клеи холодного отверждения (Л-4, ВК-9, ЭПО и др.) применяют для склеивания древесины, пластмасс, керамики и резины с металлами. Эпоксидные клеи горячего отверждения (К-153, ВК-1, ФЛ-4С и др.) используются для склеивания металлов, стеклопластика, керамики.  [c.269]

Неполярная термопластичная пластмасса. Обладает высокой химической стойкостью, высокими диэлектрическими свойствами, удовлетворительной механической прочностью.  [c.196]

Кроме прочностных свойств и высокой химической стойкости в электролитах пластмассы характеризуются хорошими антифрикционными и диэлектрическими свойствами.  [c.145]

Волокнит применяется для изготовления изделий с повышенной механической прочностью. Типичным представителем волокнитов, используемых в качестве антикоррозионных материалов, является фаолит — термореактивная пластмасса на основе резольной феноло-формальдегидной смолы. В качестве наполнителя применяются асбест (марки А), асбест и графит (марки Т) или асбест и кварцевый песок (марки П). По свойствам эти марки различаются мало фаолит Т более хрупок и труднее обрабатывается (крошится), чем фаолит А, но зато более теплопроводен и используется для изготовления теплообменной аппаратуры. Фаолит П отличается повышенной теплостойкостью и хорошими диэлектрическими свойствами в отвержденном состоянии), но по механическим показателям уступает фаолиту А.  [c.178]

Благодаря высокой механической прочности (1600— 6000 кГ см ), малому удельному весу (1,6—1,9 Г/с, з), высокой термо- и теплостойкости (250—350 °С), хорошим диэлектрическим характеристикам и другим свойствам, стеклопластики выгодно отличаются от других пластмасс и находят самое широкое применение как конструкционные материалы в машиностроении, авиации, судостроении, автомобильной, химической, электротехнической промышленности, в санитарной технике, в производстве бытовых товаров и во многих других отраслях хозяйства.  [c.165]

Благодаря большому разнообразию пластмассы отличаются широким диапазоном свойств и областей применения и превосходят многие другие материалы. Наиболее важными преимуществами полимерных материалов являются небольшая плотность, эластичность, упругость, большая механическая прочность, хорошие диэлектрические свойства, высокая химическая стойкость, влагостойкость, легкость переработки.  [c.4]

Для охлаждения резцов при точении термопластов можно использовать воду или 5 % ный раствор эмульсола в воде. Ввиду изменения диэлектрических свойств реактопластов под действием воды при их точении охлаждать резцы можно лишь сжатым воздухом. Ориентировочный режим точения некоторых пластмасс приведен в табл. 15.12.  [c.69]

Пластические массы. Пластмассы обладают многими ценными свойствами (диэлектрической прочностью, антикоррозионной стойкостью, прозрачностью, малой плотностью, быстротой изготовления и др.), выгодно отличающими их от черных, цветных металлов и других известных природных материалов. Применение пластмасс эффективно только тогда, когда выбор их для того или другого назначения производится с учетом их свойств. Практически при выборе полимерных материалов следует руководствоваться потребительскими рядами пластмасс, составленными по таким главнейшим их свойствам, как ударная прочность, износостойкость, фрикционность, антифрикционность, тепло-жаростойкость и химическая стойкость и др. Такой ряд, например, конструкционных, ударопрочных пластмасс содержит несколько наименований и марок, обладающих важными свойствами для выбора материала (табл. 13.1)  [c.241]

Особенностями пластмасс являются малая величина плотности (для большинства пластмасс плотность колеблется от 1 до 2 г/слг , а для пенопластов — от 0,015 до 0,8 г см ) низкая теплопроводность = 0,1 0,4 ккал/ м ч° С), коэффициент линейного термического расширения пластмасс а = 0,5 10 12 10" град хорошие электроизоляционные свойства (диэлектрическая проницаемость е = 1,8 -н 8,9, удельное объеишое сопротивление р =  [c.406]

Развитие промышленности пластических масс приобретает все большее аначеиие для народного хозяйства, Пластичесжие массы, благодаря своим многогранным и ценным свойствам становятся необходимыми материа-. лам и для любой отрасли народного хозяйства. Пластические массы успешно применяются в любой отрасли хозяйства. Оии обладают хорошей фиэико-механической прочностью, химической стойкостью, хорошими диэлектрическими, термоизоляционными, звужаизоляадионными свойствами при этом пластические. массы имеют низкий удельный вес. (По данным ряда отраслей промышленности, 1 т пластмасс заменяет 3—4- г цветных металлов, и они в среднем в два раза легче алюминия, в 5—8 раз легче стали. При одинаковой мощности машин с применением пластиче ских масс значительно уменьшаются их габариты.  [c.21]


По строению пластмассы состоят из полимеров (связующей ос-дювы) и наполнителя. Полимеры, входящие в состав пластмасс, существенно влияют на их механическую прочность, диэлектрические и антифрикционные свойства, водостойкость, химическую стойкость и др. Наполнители, входящие в состав пластмасс, могут иметь Органическое (например, древесная мука или ткани) и неорганическое происхождение (асбестовая бумага, стеклянная ткань). Наполнители существенно влияют на механическую прочность деталей, как бы составляя ее механический каркас. Пластмассы по прочностным характеристикам приближаются к дуралюмину и некоторым сортам стали, а по коррозионной стойкости, электроизоляционным свойствам в ряде случаев превосходят их и имеют меньший вес.  [c.215]

Вакуумная электроника, основанная на использовании движения свободных электронов и ионов в вакууме или разреженных и сжатых газах, дала возможность создать вакуумные генераторы и усилители элег<тромагнитных колебаний в широчайшем спектре частот., Имеются приборы, основанные на вакууме, которые преобразуют тепловую, световую и механическую энергию в электрическую. Функции, выполняемые электровакуумными приборами во всех отраслях радиоэлектроники, весьма обширны и разнообразны. Этому способствовало изучение электрических свойств воздуха и вакуума, разработка и применение новых газов и паров штетических жидкостей, обладаюихих высокой электрической прочностью, малыми значениями диэлектрической проницаемости и потерь, а также применение новых видов пластмасс и керамики, особенно пористых.  [c.3]

Поскольку щирокое применение порощковых наполнителей ограничивалось снижением механической прочности и ухудшением диэлектрических свойств композитов, исследования ученых были направлены на использование силановых аппретов в таких композитах. В табл. 1 приведен перечень основных порощковых наполнителей пластмасс. Почти все эти наполнители перед введением в композиты были аппретированы. Отдельные результаты таких исследований опубликованы в работах [36, 46, 43], а обобщение — в обзоре 3 ИМЯ1НС1кого [46]. Следует отметить, что ббльщую часть  [c.141]

Молекулы термопластичных полимеров (они имеют линейную или разветвленную структуру) не претерпевают при нагреве химических превращений, для придания пластичности их можно многократно нагревать, не опасаясь, что они потеряют свои свойства. Полиэтилен, полипропилен, поливинилхлорид (винипласт), полистирол, политетрафторэтилен (фторопласт), полиамиды, например, капрон — все это пластмассы, полученные на основе термопластичных полимеров. К ним же относятся эфироцеллюлозные материалы, например — целлулоид, и пластмассы на основе полиуретановых смол. Эти пластмассы обычно не содержат наполнителя, отличаются пониженной прочностью, сравнительно большой ударной вязкостью, хорошими диэлектрическими свойствами, низкой теплостойкостью. Для придания им эластичности при низких температурах и для облегчения деформации при переработке в них вводятся пластификаторы, например, камфара, олеиновая кислота, стеарат алюминия, дибу-тилфталат и пр.  [c.41]

В послевоенный период достигло темпов, неизвестных для других материалов, производство и применепие пластмасс. Это связано с исключительными технологическими свойствами пластмасс (неограниченностью ресурса сырья, значительно меньшими капиталовложениями на производство, чем для металлов, возможностью изготовления деталей высокопроизводительными методами с трудоемкостью до 10 раз меньшей, чем металлических) и с положительными эксплуатационными свойствами существующего ассортимента пластмасс (малый удельный вес, механическая прочность в широком диапазоне, высокая удельная прочность пластмасс типа стеклопластов, полиамидов и др., высокая химическая стойкость, высокие диэлектрические свойства, высокие антифрикционные свойства, низкая теплопроводность и пр.).  [c.65]

В первых экспериментальных наблюдениях явления внедрения разряда в поверхностный слой твердого диэлектрика (А.Т.Чепиков) при использовании в качестве модельного материала пластичного фторопласта при пробое в толще материала (в поле продольного среза образца) отчетливо фиксировался обугливающийся след от канала разряда, а на образцах горных пород - воронка откола материала. Этими опытами были начаты систематические исследования физических основ способа и многообразных технологических его применений. Данная разновидность способа разрушения твердых тел электрическим пробоем, использующая эффект инверсии электрической прочности сред на импульсном напряжении, получила название электроимпульсного способа разрушения материалов (ЭИ). Работы многих исследователей свидетельствуют, что гамма пород и материалов, склонных к ЭИ-разрушению, достаточно обширна. Главными предпосылками для разрушения материалов таким способом является их склонность к электрическому пробою и хрупкому разрушению в условиях импульсного силового нагружения. Электрическому пробою подвержено большинство горных пород и руд, различные искусственные материалы -продукты пффаботки или синтеза минерального сырья, а именно те, которые по электрическим свойствам могут быть отнесены к диэлектрикам и слабопроводящим материалам. За пределами возможностей способа остаются лишь руды со сплошными массивными включениями электропроводящих минералов. По условиям разрушения к трудно разрушаемым из диэлектрических материалов относятся лишь не склонные к хрупкому разрушению в естественных условиях пластмассы и резины. Но и в данном случае применение метода охрупчивания материалов глубоким охлаждением делает ЭИ-метод разрушения достаточно эффективным."  [c.12]

В зависимости от используемых наполнителей пластмассы подразделяют на композитные и слоистые. Некоторые пластмассы представляют собой чистые смолы и применяются без наполнителей. Композиции из смолы и наполнителей обычно прочнее чистой смолы. Наполнитель влияет на водостойкость, химическую стойкость и диэлектрические свойства, на теплостойкость и твердость пластмассы. Наполнители существенно снижают стоимость пластмасс. Положительные свойства пластмасс малая плотность, удовлетворительная механическая прочность, не уступающая в ряде случаев цветным металлам и сплавам и серому чугуну химическая стойкость, водо-масло- и бензостойкость высокие электроизоляционные свойства фрикционные и антифрикционные шумо- и вибропоглощающие свойства возможность окрашивания в любой цвет малая трудоемкость переработки пластмасс в детали машин. Отдельные виды пластмасс обладают прозрачностью, превышающей прозрачность стекла. Вместе с тем, применение пластмасс ограничивается их отрицательными свойствами. Недостаточная теплостойкость некоторых разновидностей пластмасс вызывает их обугливание и разложение при температуре свыше 300° С. Эксплуатационная температура для изделий из пластмасс обычно не превышает 60° С и реже 120° С. Только пластмассы отдельных видов допускают эксплуатационную температуру 150—260 С и выше. Низкие теплопроводность и твердость, а также ползучесть пластмасс в ряде случаев нежелательны. Свойства и методы испытания пластмасс приведены ниже.  [c.151]

Пластмассы отличаются, малой плотностью, высокими диэлектрическими свойствами, хоропптщ теплоизолящюпными характеристиками, устойчивостью к атлюсферным воздействиям, стойкостью к агрессивным средам и резким сменам температур.  [c.229]


Полиорганосилоксаны, участвующие в составе кремний-органиче-ских пластмасс, выгодно отличаются от органических полимеров не только стабильностью диэлектрических свойств в широком диапазоне частот и температур, но и высокими значениями деформационной теплостойкости и влагостойкости. Известны кремний-органические пластики, способные длительно работать в условиях высоких и сверХ высоких частот при нагревании до 200° С.  [c.393]

Предназна аются для сктеивапня самых различных материалов (металлы, пластмассы, стекло, бумажные и текстильные материалы) как между собой, так и в самых различных сочетаниях друг с другом, Применяются при склеивании прямолинейных поверхностей, когда требуется тговышенпая теплостойкость, сопротивление ударным нагрузкам и эластичность, а также высокие диэлектрические свойства клеевого шва для упрочения н герметизации прессовых, напряженных и плотных посадок (при отсутствии зазора между сопрягаемыми поверхностями) для контровки резьбовых соединений без применения нагрева в качестве высоко-электроизоляционных лаков (особенно БФ-2). а также связующей основы теплоэлектроизоляционных масс в качестве антикоррозионных и декоративных покрытий. Например, для клея БФ-2 удель нос объемное сопротивление равно 5-10 ОМ СМ, удельное поверхностное сопротивление 2,5-10 ом  [c.9]

Пластмассы широко применяются для изготовления вкладышей подшипников и подшипников скольжения различных машин (текстолит, древесные пластики, капрон и др.), втулок, роликов, шкивов, панелей аппаратов и приборов, при ремонте оборудования и т. п. Они обладают высокими антифрикционными свойствами, износостойкостью, превышающей в 3—10 раз износостойкость металлов, высокой механической прочностью, сравнительно быстрой нрирабатываемостью, стойкостью к минеральным маслам, диэлектрическими свойствами.  [c.452]

Пластмассы обладают ценными для машиностроения свойствами низким удельным весом, высокими химической стойкостью, удельной прочностью, фрикционными и антифрикционными свойствами, ударной прочностью, обрабатываемостью, хорошими диэлектрическими характеристиками, тепло- и звукоизоляциоппыми свойствами.  [c.301]

Эл агалирование —электролитическое нанесение непрозрачных эмалевидных пленок толщиной 10—12 мкм микротвердостью 600—700 ед., имеющих красивый декоративный вид, а при использовании щавелевокислых электролитов — высокие износостойкость и диэлектрические свойства. Пленки могут быть блестящими, матовыми, окрашенными. По внешнему виду они напоминают фарфор, пластмассу, мрамор, эмаль. Эматалевый слой стоек в органических растворителях, минеральных и животных маслах, органических кислотах не трескается при ударных и сжимающих нагрузках выдерживает нагрев до 300° С Эти качества пленки используются для защиты от коррозии и отделки медицинских аппаратов, приборов, мебели, а также для повышения износостойкости деталей машин из алюминиевых сплавов, в которых содержание легирующих добавок не должно превышать 2% Си 1% Ре, 1% N1 87о 2п 8% Mg 17о Мп.  [c.296]

Назначение. Лаборатория должна обеспечить контроль следующих свойств пластмасс технологических, характеризующих перераба-тываемость пластмасс физико-механических и диэлектрических, характеризующих качество изделий из пластмасс. К технологическим свойствам относят насыпную плотность, коэффициент уплотнения, гранулометрический состав, таблетируемость реактопластов, текучесть реактопластов, скорость отверждения реактопластов, текучесть расплава термопластов (индекс расплава), усадка.  [c.168]

Пластмассам присущи свойства, выгодно отличающие их не только от металлов, но и от силикатных, деревянных или керамических материалов. К числу этих свойств относятся [80] простота изготовления сложнейших и сложноармированных изделий обычно литьем под давлением или прессованием с минимальной последующей доработкой высокая устойчивость к атмосферным воздействиям и агрессивным средам. в связи с чем не требуется наносить на изделия защитных пленок достаточная (Для многих деталей) механическая прочность при статических и динамических нагрузках как правило, высокая виброустойчивость и износостойкость повышенная фрикционность одних пластмасс и антифрикционность других хорошие диэлектрические и теплоизоляционные качества, свето- и радиопрозрачность низкий удельный вес изделий, обычно не превышающий 2,3 10 н/л (2,3 s/rf) в большинстве случаев удельный вес колеблется в пределах (1,0—1,4) 10 н/м (1,0—1,4 г/см ) возможность создания любого декоративного эффекта (цвета, формы поверхности, армировки, лакировки и др.) непосредственно в процессе формования без каких-либо последующих операций.  [c.684]

Обладая достаточно высокими механическими и диэлектрическими свойствами, прессовочные пластмассы и пресс-порошки характеризуются такж.е и высокой технологичностью при изготовлении из них изделий. Вследствие этого, а также по причине относительной дешевизны материалы этой группы широко применяются для изготовления разнообразных электротехнических деталей и изделий конструкционного и декоративного характера. При оборке и монтаже аппаратуры станков и установок для электрической и ультразвуковой обработки прессовочные пласт,массы иапользуются для клеммных панелей, выключателей, рукояток управления, корпу00 В мелких деталей, колодок, облицовочных рамок.  [c.72]

Наполнители придают пластмассовым изделиям высокую прочность, химическую стойкость, теплостойкость, улучшают диэлектрические качества, снижают (повышают) плотность, повышают фрикционные (антифрикционные) свойства и т.д. Наполнители могут быть как органическими, так и неорганическими веществами. По структуре наполнители бывают порошкообразными, волокнистыми, листовыми и газообразными. Пластмассы с ориентированным волокнистым наполнителем и с листовым наполнителем (слоистые пластмассы) обладают ярко выраженной анизотропией механических свойств. По виду наполнителей различают пластмассы ненаполненные, или простые и наполненные. К последним относятся материалы с наполнителями порошкообразными (пресс-порошки и литьевые пластмассы) волокнистыми (волокниты, асбоволокниты, стекловолок-ниты) листовыми (гетинаксы, текстолиты, асботекстолиты, древесно-слоистые пластики (ДСП), стеклотекстолиты) газообразными (пено- и поропласты).  [c.145]

Цель книги — передать промышленности накопленнай опыт по высокочастотному нагреву диэлектрических материалов и расширить его применение. Книга носит технологический характер и в этом она отличается-от ранее опубликованных работ. В книге даны основные теоретические положения высокочастотного нагрева, свойства материалов, подвергаемых нагреву, описание режимов нагрева применительно к различным технологическим процессам. Рассмотрены Гтакие технологические процессы, как прессование изделий из пластмасс, производство изделий из стеклопластиков, сварка пластмасс, сушка различных материалов (древесина,. литейные стержни, нейлоновая крошка и т. д.), производство изделий из древ-пластиков. Произведена оценка экономической эффективности технологических процессов при высокочастотном нагреве.  [c.4]

Для изготовления малонагруженных деталей, а также электротехнических изделий используют различные полимерн 1е материалы. Они весьма стойки к воздействию химических веществ, имеют малую плотность при сравнительно высокой прочности, как правило, хорошо обрабатываются и имеют красивый внешний вид [12]. Однако многие пластмассы изменяют свои физико-механические и диэлектрические свойства в результате длительного воздействия атмосферных и климатических факторов [15]. В табл. 1.1,13 даны характеристики некоторых полимерных материалов, используемых в краностроении. Детали из пластмасс изготовляют прессованием (материал АГ-4), литьем (полиэтилен, полиамид) или Механической обработкой из листов (текстолит, гетинакс).  [c.33]

Высокая прочность, способность поглощать энергию вибраций, высокие диэлектрические, фрикционные и антифрикционные свойства, химическая стойкость и прозрачность обеспечили пластмассам широкое распространение в ма-шино- и приборостроении.  [c.294]


Смотреть страницы где упоминается термин Пластмассы Свойства диэлектрически : [c.152]    [c.418]    [c.337]    [c.325]    [c.16]    [c.409]    [c.181]    [c.8]   
Справочник металлиста Том 2 Изд.2 (1965) -- [ c.377 , c.379 , c.381 , c.383 , c.385 , c.393 ]



ПОИСК



Диэлектрическая (-йе)

Диэлектрические свойства КТН

Пластмассы Свойства



© 2025 Mash-xxl.info Реклама на сайте