Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Развитие теории Мичелля

Важность приложений теории упругости в физике и технике и выяснившаяся большая трудность поставленных задач с точки зрения математического анализа привлекли к этой новой отрасли наук внимание крупнейших исследователей XIX и XX веков. Помимо названных выше основателей теории упругости Коши, Навье и Пуассона, здесь можно назвать таких выдающихся ученых, как М. В. Остроградский, Ламе (выпустивший в 1852 г. первый курс лекций по теории упругости), Клапейрон, Сен-Венан, Грин, Максвелл, В. Томсон (лорд Кельвин), Релей, Мичелл, Матье, Ф. С. Ясинский, С. П. Тимошенко, Г. В. Колосов, Н. И. Мусхелишвили и многие другие. Читателей, желающих ознакомиться с историей возникновения и развития теории упругости, отсылаем к обстоятельному очерку, помещенному во введении к книге А. Лява Математическая теория упругости (ОНТИ, Москва, 1935 г.), а также к книге С. П. Тимошенко История науки о сопротивлении материалов (Гостехиздат, 1957).  [c.10]


Даже такое поверхностное перечисление всех важнейших работ по теории упругости потребовало бы многих страниц. Отсылая читателя, желающего ознакомиться с историей развития теории упругости, к увлекательной книге [551, здесь назовем еще лишь некоторых зарубежных иотечестЕеииых выдающихся ученых, труды которых имели определяющее значение в становлеиии теории упругости. Это прежде всего Сен-Венаи, Кирхгоф, Ллв, Фойгт, Герц, Мичелл, G. П. ТГимошенко, И. Г. Бубнов, Б. Г. Галеркин, П. Ф. Папкович, Г. В. Колосов,  [c.6]

В постановке и решении ряда задач аэродинамики, в частности для схематизации движения воздуха и его действия на тела, немаловажную роль ыграли различные гидродинамические модели [26] При этом большую роль сыграли ударная теория сопротивления И. Ньютона (1686 г.), теория идеальной несжимаемой жидкости, разработанная Д. Бернулли (1738 г.) л Л. Эйлером (1769 г.), теория вязкой несжимаемой жидкости, созданная А. Навье (1822 г.) и Дж. Г. Стоксом (1845 г.), теория струйного обтекания тел, развитая Г. Гельмгольцем (1868 г.), Г. Кирхгофом (1869 г.), а в дальнейшем Рэлеем (1876 г.), Д. К. Бобылевым (1881 г.), Н. Е. Жуковским (1890 г.), Дж. Мичеллом (1890 г.), А. Лявом (1891 г.). Особое значение для становления аэродинамики имели работы Г. Гельмгольца, заложившего основы теории вихревого движения жидкости (1858 г.). В начале XIX в. появились понятия подъемной силы (Дж. Кейли) и центра давления. Дж. Кейли впервые попытался сформулировать основную задачу расчета полета аппарата тяжелее воздуха как определение размеров несуш,ей поверхности для заданной подъемной силы [27, с. 8]. В его статье О воздушном плавании (1809 г.) предложена схема работы плоского крыла в потоке воздуха, установлена связь между углом атаки, подъемной силой и сопротивлением, отмечена роль профиля крыла и хвостового оперения в обеспечении продольной устойчивости летательного аппарата я т. п. [28]. Кейли также занимался экспериментами на ротативной маши-де. Однако его исследования не были замечены современниками и не получили практического использования.  [c.283]

В выводе уравнений элементарной теории пластинок принимается, что каждый тонкий слой пластинки, параллельный ее срединной плоскости а г/, находится в плоском напряженном состоянии, в силу чего отличными от нуля остаются только три компоненты напряжения Оу и Тху. Для более толстых пластинок полезно иметь полное решение задачи с учетом всех шести компонент напряжения. Несколько решений этого рода было предложено Сен-Венаном в его переводе книги Клебша ). Некоторые элементарные строгие решения для круглых пластинок были найдены А. П. Коробовым ), опыт же построения общей строгой теории пластинок был предложен Дж. Мичеллом ) и получил дальнейшее развитие в книге А. Лява ) по теории упругости. В последнее время строгая теория, пластинок обратила на себя внимание инженеров и некоторые ее задачи были полностью решены. Особого упоминания заслуживают труды С. Войновского-Кригера ) и Б. Г. Галер-кина ). Возрастающий успех, который находят в настоящее время в разнообразных технических применениях тонкостенные конструкции, привлек большое внимание к теории оболочек. Приемлемое для практики решение во многих, относящихся к тонким оболочкам, задачах становится достижимым, если пренебречь изгибом и допустить, что напряжения распределяются по толщине  [c.492]


При резких изменениях поперечного сечения обычно имеет место значительная концентрация напряжений, и потому практически необходимо особое исследование местных напряжений. Особенно большое значение имеет случай кручения вала переменного кругового поперечного сечения. Общая теория кручения такого вала разработана Дж. Мичеллом i). Она была вновь развита А. Фёпплем ), применившим теорию к осесимметричному конусу и цилиндрическим валам переменного сечения с круговыми выточками. Последняя задача для практики особо важна дальнейшая ее разработка дана Ф. Виллерсом ). С помощью графического интегрирования ему удалось определить численные значения коэффициента концентрации напряжения при различных соотношениях радиуса выточки р  [c.573]

Метод Жуковского — Мичелла предоставил принципиальную возможность решать задачи о струйном обтекании несжимаемой жидкостью полигональных 284 препятствий. Однако случай криволинейных препятствий требовал развития новых методов. Общая задача о плоском струйном обтекании заданного-криволинейного препятствия была сведена к интегро-дифферекциальному уравнению Т. Леви-Чивитой А. Билля и А. И. Некрасовым Некрасов построил методом последовательных приближений решение задачи об обтекании дуги круга, доказал единственность решения и сходимость использованного им метода для достаточно малых дуг и вычислил первое приближение. Ряд общих теорем существования и единственности для плоских задач о струйном обтекании препятствий был доказан Ж. Лерэ с использованием методов функционального анализа и М. А. Лаврентьевым на основе развитых им вариационных методов. Некоторые инфинитезимальные доказательства отдельных теорем были получены также А. Вайнштейном.  [c.284]


Смотреть страницы где упоминается термин Развитие теории Мичелля : [c.490]    [c.491]    [c.493]    [c.232]    [c.463]    [c.509]   
Смотреть главы в:

Теория волновых движений жидкости Издание 2  -> Развитие теории Мичелля



ПОИСК



Развитие теории РПИ



© 2025 Mash-xxl.info Реклама на сайте