Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Me-дуга в вакууме

Посты для ручной и механизированной сварки металлов и установки для автоматизированной сварки плавлением содержат оборудова]гие, обеспечивающее питание источника сварочной теплоты — электрической дуги, шлаково ванны, электронного или светового луча и т. п. сварочный манипулятор, предназначенный для закрепления и перемещения детали нри сварке, и оборудование, обеспечивающее необходимую защиту свариваемого металла от окисления и загрязнения с помощью флюса, потока или атмосферы защитного газа или вакуума.  [c.123]


Индукционные печи имеют преимущества перед дуговыми в них отсутствует электрическая дуга, что позволяет выплавлять сталь с низким содержанием углерода, газов и малым угаром элементов при плавке в металле возникают электродинамические силы, которые перемешивают металл в печи и способствуют выравниванию химического состава, всплыванию неметаллических включений небольшие размеры печей позволяют помещать их в камеры, где можно создавать любую атмосферу или вакуум. Однако эти печи имеют малую стойкость футеровки, и температура шлака в них недостаточна для протекания металлургических процессов между металлом и шлаком. Эти преимущества и недостатки печей обусловливают возможности плавки в них в индукционных печах выплавляют сталь и сплавы из легированных отходов методом переплава или из чистого шихтового железа и скрапа с добавкой ферросплавов методом сплавления.  [c.40]

Вывод при сварке в вакууме размер дебаевского радиуса на три порядка меньше размеров столба дуги, поэтому дугу можно считать все еще квази-нейтральной.  [c.52]

Ме-дуги используют при сварке электродами без покрытия, покрытыми и порошковыми электродами и проволоками, при сварке под флюсом и в защитных газах (СО2, Аг, Не), а также при сварке в вакууме.  [c.93]

Существуют, безусловно, отклонения от указанных разделений, например W-дуга в вакууме или в инертном газе с испаряющимся анодом или катодом, однако они сравнительно редки. Используются также графитовые (угольные) и медные охлаждаемые неплавящиеся электроды, но сравнительно редко. Все процессы сварки Ме-дугой, представляющие большой интерес в металлургическом отношении, рассмотрены подробно в разд. II и III и здесь описываются кратко.  [c.93]

МЕТАЛЛИЧЕСКИЕ ДУГИ В ЗАЩИТНЫХ ГАЗАХ И ВАКУУМЕ  [c.96]

Безусловно, дуга в вакууме отличается по своим свойствам от дуги при атмосферном давлении. Плазму столба дуги уже нельзя рассматривать как термически равновесную, так как электронная температура больше температуры газа Te>Tg (см. пример 3). Термическая ионизация в столбе дуги снижается  [c.97]

В связи с этим разрабатываются и находят промышленное применение (помимо электродуговой) другие методы плавки, в которых сохраняется принцип гарнисажной плавки в вакууме, но вместо электрической дуги - источника тепловой энергии используют энергию электронного луча или плазмы. Ведутся исследования по применению индукционного способа плавки титановых сплавов в так называемых холодных тиглях.  [c.312]

В однородном поле пробой наступает практически мгновенно по достижении определенного напряжения Unp. Между электродами возникает искра, которая при достаточной мощности источника напряжения может перейти в электрическую дугу. Для газов установлен закон Пашена при неизменной температуре пробивное напряжение газа зависит от произведения его давления р на расстояние d между электродами Un-p = f(pd). На рис. 23.1 эта зависимость представлена для воздуха и водорода. Для каждого газа характерно существование минимального значения пробивного напряжения при определенном значении pd (для воздуха 327 В при pd = 665 Па-мм). Минимальное пробивное напряжение некоторых других газов. В аргон 195 водород 280 углекислый газ 420. Если иметь в виду пробой на переменном напряжении, то приведенные данные относятся к амплитудным значениям. Как видно из рис. 23.1, при давлении, близком к нормальному (0,1 МПа), и реальных межэлектродных расстояниях произведение pd таково, что рабочая точка для воздуха находится на правой ветви кривой Пашена. Поэтому с увеличением р или d t/np растет, а при уменьшении их — снижается. Левая ветвь соответствует разреженным газам, так как меж-электродные расстояния порядка 0,001 мм при атмосферном давлении на практике не применяются. Для повышения Unp газовых промежутков используют как повышение давления (обычно до 1,5 МПа), так и глубокое разрежение газа (вакуум). При значительном снижении давления газа (левая ветвь кривой Пашена) Unp растет из-за затруднения образования газового разряда вследствие малой вероятности столкновения заряженных частиц с молекулами. Но рост не беспределен при давлениях порядка 10 —10- Па (10- —10— мм рт. ст.) газовый разряд переходит в вакуумный. Вакуумный же пробой обусловлен процессами на электродах, и поэтому Unp в вакууме зависит от материала и состояния поверхности электродов [13, 14].  [c.545]


Поэтому при некоторых условиях возможно появление разрядов в виде искрений или дуг, горящих на поверхности тигля, что при определенных обстоятельствах может представлять опасность для нормальной работы печи. Наиболее существен этот вопрос при плавке в вакууме.  [c.67]

За последние годы в связи с развитием техники возникли потребности сварки новых, ранее не применявшихся материалов с особыми свойствами. В современной технике (особенно ракетной, авиационной, энергетической, атомной, химической, приборостроительной и др.) стали широко применяться в качестве конструкционных материалов тугоплавкие и в химическом отношении весьма активные металлы — молибден, тантал, вольфрам, ниобий, цирконий, бериллий и др. Это обусловило разработку способов сварки, основанных на новых физических принципах, так как при помош,и суш е-ствовавших методов не представлялось возможным получать доброкачественные соединения. В результате исследований, проведенных во многих странах, в том числе и в СССР, были изысканы новые источники нагрева, обеспечившие создание сварки электронными и когерентными лучами, плазменной дугой, ультразвуком, диффузионной сварки в вакууме, холодной сварки, сварки трением и др. Эти новые способы сварки внедряются в нашей стране.  [c.130]

Закрепление концов рулонной полосы после навивки обечаек на опытном участке ХТЗ выполняли ручной дуговой сваркой. Наружные и внутренние нахлесточные швы обечаек, как показано в работе [3], сваривали двумя дугами в раздельные ванны . Разработанный способ и режимы сварки (табл. 1) обеспечивали получение швов с требуемой высотой усиления и плавным переходом к основному металлу. Результаты контроля швов неразрушающими методами подтвердили достаточную их стойкость против образования дефектов. Так, количество обечаек с дефектами во внутренних нахлесточных швах, приводящих к нарушению герметичности (данные вакуум-пузырькового контроля), не превышало 2,7 %, а с другими дефектами, требующими исправления (данные рентген-телевизионного контроля) — 4,7 %. В обоих случаях образование дефектов связано с отклонениями от заданных параметров сварочных процессов в част-  [c.163]

Интересен метод вакуумной сварки плавящимся электродом, разработанный в последнее время в МВТУ — МЭИ. При этом способе сварки горение дуги происходит в парах металла. Способ очень рационален для сварки толстостенных изделий из алюминиевых, титановых и других сплавов. Сварка в вакууме плавящимся электродом производительная, разогрев получается концентрированным, качество соединений высокое. В настоящее время уже разработаны крупногабаритные камеры для сварки этим способом.  [c.124]

Для того чтобы получить металл шва требуемого состава, применяют защиту и добавочное легирование металла шва, используя присадочный металл с повышенным содержанием легирующих элементов, электродные покрытия при ручной дуговой сварке и флюсы при автоматической, полуавтоматической и электрошлаковой сварках. Для этих же целей служит и газовая защита при сварке в инертных газах (аргоне, гелии) и углекислоте. В последнее время все более широко используют в качестве защитной среды вакуум — при сварке электронным лучом, дугой и диффузионной сварке.  [c.293]

Отвод тепла, поступающего из дуги в торец контакта, и джоулева тепла, выделяющегося в контакте при прохождении тока, происходит теплопроводностью тела контакта и излучением в вакууме. Кроме того, на торце контакта происходит испарение материала контакта, также поглощающее некоторое количество тепла.  [c.457]

Первые работы в этом направлении были выполнены в 1912 году [19, 20] изучение испарения Zn, d, Se и As в вакууме, а также в водороде, азоте и углекислом газе показало, что размер получаемых частиц зависит от давления и атомной массы газа. Авторы [21] испаряли золото с нагретой вольфрамовой нити и при давлении азота 0,3 мм рт. ст. (40 Па) получили в конденсате сферические частицы диаметром от 1,5 до 10 нм. Они обнаружили, что размер частиц зависит от давления газа и в меньшей степени от скорости испарения. Конденсация паров алюминия в Hj, Не и Аг при различном давлении газов позволила получить частицы размером от 100 до 20 нм [22]. Позднее методом совместной конденсации паров металлов в Аг и Не удалось получить высокодисперсные сплавы Аи—Си и Fe—Си, образованные сферическими частицами диаметром 16—50 нм [23, 24]. Вариантом конденсации пара металла в газовой атмосфере является предложенный еще в XIX веке метод диспергирования металла с помощью электрической дуги в жидкости и последующей конденсации металлического пара в парах жидкости [25] позднее этот метод был усовершенствован авторами [26—28]. Первый об-  [c.17]

Вакуумно-дуговой переплав осуществляется под вакуумом, поэтому нельзя забывать о возможных потерях элементов с высокой упругостью пара. Однако многие из этих элементов представляют собой "сорные примеси", способные, если при-. сутствуют в достаточных количествах, оказывать пагубное влияние на свойства сплава иными словами, удаление таких элементов, как свинец, висмут, олово, мышьяк и цинк, является благоприятным событием. Но опасность потерь в таких летучих элементах, как марганец и медь в сплавах, где их содержание строго определено, требует некоторых изменений в практике вакуумно-дугового переплава. В этих случаях плавку ведут под некоторым парциальным давлением азота или аргона, либо заблаговременно оптимизируют исходный химический состав электрода. Важно понимать, что вакуумно-дуговой переплав не был предназначен для удаления летучих элементов. Следует помнить и то, что эти элементы, даже если они полезны в том или ином отношении, понижают стабильность дуги. Когда же они образуют мощный конденсат на стенках изложницы, происходит серьезное ухудшение качества поверхности слитков.  [c.139]


Металл плавится в пламени дуги, возникающей между верхним расходуемым электродом и нижним электродом— расплавленным металлом в медной изложнице. Горение дуги в вакууме обеспечивается присутствием в узком зазоре между расплавом и расходуемым электродом ионизированных паров титана.  [c.398]

Лазерную сварку производят на воздухе или в среде защитных газов аргона, СО2. Вакуум, как при электронно-лучевой сварке, здесь не нужен, поэтому лазерным лучом можно сваривать крупногабаритные конструкции. Лазерный луч легко управляется и регулируется, с помощью зеркальных оптических систем легко транспортируется и направляется в труднодоступные для других способов места. В отличие от электронного луча и электрической дуги на него не. влияют магнитные поля, что обеспечивает стабильное формирование шва. Из-за высокой концентрации энергии (в пятне диаметром 0,1 мм и менее) в процессе лазерной сварки объем сварочной ванны небольшой, малая ширина зоны термического влияния, высокие скорости нагрева и охлаждения. Это обеспечивает высокую технологическую прочность сварных соединений, небольшие деформации сварных конструкций. Например, лазерная сварка вилки с карданным валом автомобиля по сравнению с дуговой сваркой увеличивает срок службы карданной передачи в три раза, потому что более чем вдвое уменьшается площадь сечения сварного шва, в несколько раз -время сварки. Деформации вилки, вызывающие преждевременный износ, практически отсутствуют.  [c.236]

По степени вакуумирования различают установки с низким вакуумом (до 10 мм рт. ст.), со средним вакуумом (10 ..Л0 мм рт. ст.), с высоким вакуумом (свыше 10 мм рт. ст.) и с пониженным или повышенным давлением заш итного газа. По объему вакуумирования различают установки с полным (общим) и местным вакуумированием, при котором в камеру помещают не всю деталь, а только место сварки, что позволяет сваривать длинные прутки, профили, трубы с локальной защитой зоны сварки от воздуха. Нагрев при диффузионной сварке можно осуществлять любыми источниками тепла, например электронным лучом, дугой, световым лучом. Чаще всего применяют индукционный нагрев токами высокой частоты, электроконтактный нагрев током, пропускаемым через свариваемые детали, или радиационный нагрев электронагревателем.  [c.277]

Физико-металлургические процессы, протекающие при сварке (па торце электрода, в дуге, ванне), должны обеспечить металл шва такого химического состава, при котором были бы получены необходимые его свойства отсутствие дефектов (трещин, пор и др.), равнопрочность с основным (свариваемым) металлолт и другие свойства, определяемые условиями его работы. Этого можно достичь легированием металла Н1ва присадочным металлом, покрьпием, флюсом либо применением особых методов защиты зоны сварки (защитных газов, вакуума) при сварке без добавочных материалов.  [c.83]

Разновидностью способа испарения металла в вакууме является нрнменение электрической дуги между двумя электродами из наносимого металла. Под действием этой дуги металл плавится, испаряется и осаждается тонким слоем на поверхности изделий.  [c.325]

Установленная- целесообразность применения при сварке дугой в вакууме в Качестве плавящегося электрода проволоки того же состава или несколько более легированной подтверждена и другими экспериментами. Ток при АДЭСПЭа в разделку сплава ЗВ толщиной 15— 60 мм проволокой ВТбСв (т. е. той же системы, но более легированной) были получены равнопрочные сварные соединения, имеющие большую прочность, пластичность и ударную вязкость, чем основной металл.  [c.144]

Дуговой разряд в вакууме изучен применительно к вакуумной дуговой плавке (ВДП), в которой он является основой рабочего процесса. В момент, следующий за зажиганием дуги (еще в первый полупериод изменения тока), на расходуемом электроде и шихте возникают так назъшаемые катодные и анодные пятна и дуга -горит между горячими точками электродов.  [c.67]

Отметим особую ситуацию, при которой надежное шунтирование дуг отсутствует. Она имеет место в тигле обычной конструкции — с днищем, изолированным от стенок, в период расплавления кусковой шихты. Аналогичная ситуация возможна при очень малом количестве расплава в тигле и большом токе индуктора, когда расплав может оказаться по всей своей высоте отжатым от стенок тигля (например, в конце операции донного вылива). Проведение таких операций Требует осторожности, включая дополнительные мероприятия в зависимости от местных условий (ограничение напряжения на индукторе, регулирование вакуума, использование вспомогательного темплета, защитной атмосферы и др.).  [c.73]

Попытка повысить производительность автоматов с открытой дугой путем увеличения тока в дуге приводили к большому угару электродов, разбрызгиванию металла и плохому качеству сварочного шва. Удачное решение задачи было найдено работниками Института электросварки АН УССР имени Е. О. Патона и ЦНИИТМАШ в виде автоматических самоходных сварочных головок с дугой, работающей под флюсом. Широкое применение получили новые способы сварки электрошлаковая, плавящимся электродом в среде углекислого газа, в вакууме электронным лучом, трением, холодная сварка давлением, ультразвуковая, сварка перемещающейся дугой, управляемой магнитным полем, диффузионная сварка в вакууме при нагреве деталей токами высокой частоты.  [c.104]

Для наплавки уплотнительных колец применяются и такие прогрессивные методы, как плазменная наплавка в аргоне с вдуванием в зону дуги порошка из хромоникелевых сплавов Колмоной с содержанием, % 8—20 Сг 1,5—45 В 1—5 Si и др. Используется также наплавка в вакууме током высокой частоты.  [c.290]

Такие электроды затем собираются в пакет в количестве 9— 16 шт. в соответствии с размерами кристаллизатора. Плавки проводятся в медном водоохлаждаемом кристаллизаторе 0 ПО мм и 0 125 мм. Выплавка слитков сплава ЦМ-2А производится в вакууме при давлении 1—4-10 мм. рт. ст. на постоянном токе силой 4300—4500 а при напряжении на дуге 29—32 в, токе соленоида 0,5—1,0 а. Заданное напряжение на дуге во время плавки поддерживается автоматически при помощи амплидинной схемы, воздействующей на мотор механизма подачи электрода.  [c.79]

Другой разновидностью вакуумной сварки, разработанной в лаборатории МВТУ и МЭИ под руководством д-ра техн. наук проф. Н. А. Ольшанского и канд. техн. наук В. М. Ямпольского, является автоматическая сварка в вакууме плавящимся электродом. При этом дуга горит в парах металла. Этот способ сварки  [c.172]

Идея использования электрической энергии для освещения появилась еще у первых исследователей гальв нического электричества. В 1801 г. Л. Яг. Тенар, пропуская через платиновую проволоку электр ическгш ток, довел ее до белого накала. В 1802 г. русский физик В. В. Петров получив впервые электрическую дугу, заметил, что ею может быть освещен темный покой . Тогда же он наблюдал электрический разряд в вакууме, сопровождавшийся свечением [17]. Несколько лет спустя английский ученый Г. Дэви также высказывал мысль о возможности освещения электрической дугой. Таким образом, в экспериментальных работах начала XIX в. уже были выявлены три принципиально разные возможности электрического освещения, реализованные позднее в лампах накаливания, дуговых и газоразрядных осветительных приборах, однако до практического их освоения было тогда далеко.  [c.53]


Явление В. п. широко используется в приборах и установках. Высокая электрич. прочность вакуума и вакуумная дуга исгтользуются в вакуумных выключателях. Нач. стадия В, п. длительностью до 10 с, в к-рой развиваются сильные токи электронов при высоком напряжении на промежутке, используется в мощных источниках рентг. излучения и сильноточных ускорителях. В многочисленных высоковольтных приборах и установках, где вакуумные промежутки применяются только для ускорения потоков электронов и ионов, очень важно, чтобы случайные В. н. не нарушали работу. этих устройств, отсюда необходимо обеспечение их электрич. прочности. Увеличение электрич. прочности вакуумных промежутков достигается соответствующим выбором материалов электродов, их тщательной механлч. обработкой (устранением неровностей и острий), а также очисткой поверхностей электродов, к-рая достигается нагревом в вакууме, обработкой потоками электронов или ионов инертных газов. Электрич. прочность вакуумного промежутка с необработанными электродами составляет ок. 10 В/см, в то время как промежутки с электродами, прошедшими тщательную механическую, а также электронную и ионную обработки, показывают электрич. прочность, доходящую до 10 В/см.  [c.238]

Торти (931 приводит следующие подробности одного из способов дуговой плавки тантала. Электроды изготовляют прессованием порошка тантала вы соком степени чистоты крупностью от —12 до +325 меш в короткие брикеты диаметром 45—50 ли1. Перед плавкой брикеты для упрочнения подвергают термообработке прямым нагревом (за счет сопротивления в вакууме в течение приблизитетьно 1 жин при температуре до 1500. После этого их сваривают в дуге с нерасходуемым вольфрамовым электродом в атмосфере аргона в электроды, предназначенные для переплавки в дуговой печи. Печь работает при остаточном давлении 2-10 5-10 лш рт. ст., поддерживас-  [c.690]

Выплавка и разливка таких металшов, как молибден и вольфрам, могут проводиться только в дуговой печи. На рис. 43 показана печь, усовершенствованная для дуговой плавки молибдена в вакууме [40]. Плавка и разливка производятся в во-доохл аждаемом медном сосуде, служащем одним из электродов. Установлено, что слиток при этом не загрязняется медью. Другой электрод представляет собой металлокерамический стержень из молибдена или молибденового сплава, который подается в плавильную камеру двумя зубчатыми шестернями, приводимыми в движение мотором, автоматически управляемым напряжением в дуге. В более современных усовершенствованных агрегатах смесь металлического порошка поступает в печь, где она прессуется, спекается и непрерывно подается в плавил1ьную камеру.  [c.65]

Датчики положения сварочного инструмента 330 Двойное дугообразование 227 Дежурная дуга 223 Дендритные кристаллиты 27 Детали машин и приборов 363 Дефекты контактной сварки 278, 339 Дефекты пайки 339 Дефекты подготовки и сборки деталей 337 Дефекты сварки 337 Деформации сварочные 37, 39 Диффузионная сварка в вакууме 275 Диффузионная сварка на воздухе 297 Дуга трёхфазная 195 Дуговая резка 310  [c.391]


Смотреть страницы где упоминается термин Me-дуга в вакууме : [c.50]    [c.60]    [c.97]    [c.553]    [c.143]    [c.238]    [c.224]    [c.131]    [c.400]    [c.196]    [c.252]    [c.252]    [c.403]    [c.690]    [c.201]    [c.228]   
Теория сварочных процессов (1988) -- [ c.97 ]



ПОИСК



Вакуум

Вес дуги

Дугове зварювання в контрольованш атмосфер тау вакуум



© 2025 Mash-xxl.info Реклама на сайте