Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементарные дугии свободные циклы без контакта

Затем рассматриваются части дуг и циклов без контакта, на которые они разделяются общими с особыми траекториями точками. Такие части названы элементарными о- и а-дугами. Циклы без контакта, которые не имеют общих точек с особыми траекториями, называются свободными о- и а-циклами. Элементарные со-, а-дуги и ю- и а-циклы играют весьма важную роль при построении топологического отображения, доказывающего основную теорему.  [c.454]

Элементарные дуги и свободные циклы без контакта. Предположим, что выбрана некоторая правильная система канонических окрестностей. Всюду в дальнейшем будем обозначать канонические окрестности через (у) и g), канонические кривые зтой правильной системы канонических окрестностей — через (С), (а) и через (I) — параболические дуги канонических кривых (а). Кроме того, в согласии с введенным выше обозначением будем через (Г) обозначать граничные простые замкнутые кривые и через (к) — граничные дуги без контакта, и через (Хс) — седловые дуги, т. е. дуги без контакта, входящие в границы гиперболических секторов (см. 18, п. 3). При этом, как и выше, (см. 19, п. 2) седловую дугу будем называть со-седловой, если в точках этой дуги, отличных от концов, траектории входят внутрь седловой области, и а-седловой дугой, если в точках этой дуги, отличных от концов, траектории выходят из этой области. Очевидно, каждая седловая область g имеет одну граничную со-седловую дугу и одну а-седловую дугу без контакта. Так как выбранная система канонических окрестностей правильная, то только один конец всякой седловой дуги принадлежит особой полутраектории. Конец а-седловой дуги, граничной для седловой области g , одновременно является и концом а-сепаратрисы, входящей в границу области g , а конец ы-седловой дуги — концом ы-сепаратрисы, входящей в границу этой области.  [c.458]


Очевидно, траектории, пересекающие сопряженные со- и а-дуги в точках, отличных от их концов, или сопряженные со- и а-циклы, принадлежат одной и той же ячейке. Таким образом, все элементарные дуги и все свободные циклы распадаются на пары сопряженных дуг и сопряженных свободных циклов. Заметим, что циклическая элементарная и нециклическая элементарная дуги могут быть сопряженными. Простой пример представлен на рис. 279. Из двух сопряженных свободных циклов без контакта один или даже оба могут быть граничными циклами без контакта.  [c.463]


Смотреть страницы где упоминается термин Элементарные дугии свободные циклы без контакта : [c.497]    [c.487]   
Смотреть главы в:

Качественная теория динамических систем второго порядка  -> Элементарные дугии свободные циклы без контакта



ПОИСК



Вес дуги

Контакт свободный

Контакты



© 2025 Mash-xxl.info Реклама на сайте