Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Показать Snow, метод

Все исторически сложившиеся традиционные технологические методы токарной обработки основываются на постоянстве углов резания при точении. Это хорошо видно из рис. 6, а, где показана схема поперечного точения наружной поверхности тел вращения типа колец. Таким образом обрабатываются многие цилиндрические, конические, фасонные поверхности. Обработка производится благодаря вращению заготовки со скоростью V м/мин и поперечной подаче суппорта с резцом со скоростью Snon мм/об. При этом па резце путем соответствующей заточки образуют углы резания передний угол у и задний угол а, которые в процессе обработки (снятия припуска глубиной t), как видно на рис. 6, а, не меняются. Аналогичная картина наблюдается и при продольной обточке, когда суппорт с резцом движется параллельно оси изделия. Обе схемы — поперечного и продольного точения, а также их комбинации, например при  [c.84]


Эта зависимость справедлива лишь в определенном диапазоне изменения S. В двойной логарифмической системе координат легко найти условную величину б при S = 1 мм/мин (/Сн) и тангенс угла наклона зависимости (2). За величину Smin может быть принята не только точка, соответствующая б /2 = 100%, как показано на рис. 21, но и начало резкого подъема кривой, что у отдельных конструкций наблюдается при 5 > Smin. Перечисленные величины достаточно полно характеризуют этот критерий качества. При планировании эксперимента необходимо обеспечить достаточную точность их определения. Основные эксперименты проводятся при средних величинах подач S = 30—300 мм/мин. Затем S постепенно уменьшают до момента обнаружения скачкообразного движения и значительного отклонения полученных данных от степенной зависимости. При подачах S j> 300 мм/мин в ряде случаев из-за малости ба трудно обеспечить точность ее определения и приходится прибегать к более сложным средствам проведения эксперимента (например, использовать оптические методы). Однако для станков нормальной точности наибольшее практическое значение имеет изучение часто используемого рабочего диапазона подач и определение ве-ЛИЧИНЫ 5rnin. Определение величины б полезно также для тех механизмов позиционирования, у которых подход узла к конечному положению или к фиксатору осуществляется на пониженной скорости (ступенчатое изменение скорости или реверсирование выходного звена). В этих случаях от величины б-j существенно зависит точность позиционирования. В ряде конструкций уменьшают бц за счет применения гидростатических направляющих.  [c.98]

PrV-образов течения, полученных в соответствующие моменты времени с временной задержкой в О, Г, 2Т, ЗТ. Такое кратно-периодическое осреднение мгновенных полей скорости позволяет, как и в стационарном случае, существенно уменьшить случайную ошибку измерений, и, с другой стороны, оно практически полностью устраняет ошибку смещения, связанную с нестационарными изменениями структуры потока. На цв. рис. 6 демонстрируется сравнение полученных результатов с трехмерным нестационарным расчетом, метод которого детально описан в [Shen et al, 2001]. На рисунке показаны сечения 25 мгновенных трубок тока постоянного расхода с неравномерным шагом, как и на цв. рис. 5. Размер окна определяется координатами [-3R/A-, ЪК/А] в горизонтальном и [ii/8 1Н/Щ в вертикальном направлениях. Из приведенных сечений трубок тока видно перемещение области пузыревидного распада вихревой структуры в осевом направлении сверху вниз, причем размах колебаний существенно превосходит амплитуду колебаний визуализированной структуры течения (рис. 7.66). Кроме того, PIV-образы течения фиксируют существование замкнутого пузыря, в то время как он полностью отсутствует при визуализации. В момент времени t = Q пузырь находится в высшей точке своей траектории (у неподвижного дна) и растет, достигая своего максимального размера при t = Т/А. Затем он сносится основным потоком вниз к вращающейся крышке, одновременно уменьшаясь в размере вплоть до полного исчезновения. В момент времени t-T/2 пузырь находится в нижней точке своей траектории и еще отчетливо фиксируется. При i = ЗГ/4 пузырь визуально не наблюдается, но на его перемещение вверх указывает локальное расширение трубок тока у оси, отчетливо наблюдаемое в верхней части рисунков. Затем, достигнув крайнего верхнего положения, пузырь возникает вновь (момент времени i = 0) и начинает расти в размерах. Цикл повторяется снова.  [c.471]


Интеграл (21.12) можно вычислить методом перевала. При kr > 1 экспонента является быстро осциллирующей функцией. Если к тому же расстояние R значительно превосходит длину области h вдоль оси цилиндра (см. рис. 46), в которой колебательная скорость отлична от нуля, то функция Bo( sina) меняется на промежутке интегрирования значительно медленней, чем экспоненциальный множитель [для того чтобы это показать, следует, например, сравнить скорость изменения экспоненты и выражения (21.16а), полученного ниже для равномерного распределения возбуждения очевидно, что при R h экспонента осциллирует намного быстрее, чем Вд (к sin а)].  [c.156]

Инженеры-строители увидели возможное применение поперечных волн в своей отрасли раньше геофизиков (патент Рикера, 1941). В благоприятных условиях, легкого источника энергии и короткой системы наблюдения метода преломленных волн достаточно для получения скоростей продольных и поперечных волн в приповерхностных отложениях. Как будет показано, достаточно знать эти скорости и оценку плотности, чтобы вывести модули упругости, которые связаны с механическими свойствами пород и, следовательно, с безопасностью строительства таких объектов как дамбы или туннели (Suyama, 1984).  [c.2]


Смотреть главы в:

1С Предприятие версия 7.7 Часть1  -> Показать Snow, метод



ПОИСК



Показать все

Показать, метод

Сим (Symm



© 2025 Mash-xxl.info Реклама на сайте