Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ДИФФУЗИЯВ ТВЕРДЫХ ТЕЛАХ

В твердых телах диффузия совершается за счет колебаний атомов около их равновесных положений. Коэффициент диффузии твердых тел лежит в диапазоне 0=10 ... 10 м с.  [c.293]

Согласно теории Нернста, к поверхности твердого тела прилегает тонкий слой неподвижной жидкости толщиной 6, в котором происходит диффузия растворяющегося вещества. За пределами этого слоя движение жидкости, увлекающей растворенное вещество, приводит к поддержанию постоянства концентрации во всем остальном объеме раствора. Толщина б получила название толщины диффузионного слоя Нернста. Она зависит только от скорости перемещения диффундирующего вещества  [c.205]


Отметим, что в отличие от систем жидкость—твердое тело, газ—твердое тело в рассматриваемых газожидкостных системах сама поверхность раздела фаз (г, I) является величиной, изменяющейся во времени и пространстве. Поскольку процессы массо-переноса протекают в обеих фазах, в математическую постановку задачи массопереноса в системах газ—жидкость включаются уравнения переноса в обеих фазах с нелинейными граничными условиями. Изменение поверхности раздела фаз в процессе массопереноса влечет за собой изменение гидродинамических характеристик системы, а именно поля скоростей V (г, 1) вблизи межфазной поверхности. Однако, как это видно из уравнения конвективной диффузии, вектор поля скорости входит в левую часть (1. 4.. 3), следовательно, изменение скорости V вызовет и изменение распределения концентрации целевого компонента с (г, I) вблизи поверхности. Таким образом, в общем случае необходимо решать самосогласованную задачу тепломассопереноса и гидродинамики.  [c.15]

Энергии активации диффузионных процессов, как видно, ниже энергии активации химических реакций ввиду того, что молекулы или атомы при диффузии не изменяют своего строения. В данном случае энергия активации будет определяться диффузионной средой и ее строением. Особенно высоки значения энергии активации при диффузии в твердых металлах и других кристаллических веществах. В твердом теле диффузия может происходить  [c.298]

Высокая энергия активации диффузии в твердых телах делает коэффициенты диффузии очень малыми согласно уравнению (8.99).  [c.304]

При неоднородном составе частиц диффузия происходит в любых системах. В газах она идет довольно быстро, в жидкостях — медленнее, а в твердых телах —совсем медленно, но все же идет.  [c.190]

При наличии градиента плотности равноправие направлений <туда и обратно , вообще говоря, нарушается. И в газах —из-за несимметричности распределения по скоростям — при t Тс в одну сторону будет смещаться чуть больше частиц, чем в другую.. Но за времена i Й Тс всякое направленное перемещение данной группы частиц исчезнет. Собственно, в этом и проявляется существование конечного времени корреляции, как это иллюстрирует рис.9.7. В жидкостях же или твердых телах перемещения за времена С Тс вообще не имеют никакого отношении к диффузии.  [c.205]

При диффузии частиц в твердом теле время корреляции так мало, что для любого интервала можно считать т . А заданной.  [c.207]

Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости. Тело в жидком состоянии, как и в газообразном, не имеет постоянной формы. Форма жидкого тела определяется формой сосуда, в котором находится жидкость, действием внешних сил и сил поверхностного натяжения. Большая свобода движения молекул в жидкости приводит к большей скорости диффузии в жидкостях по сравнению с твердыми телами, обеспечивает возможность растворения твердых веществ в жидкостях.  [c.83]

Кроме того, разница в свойствах твердого тела и жидкости проявляется в коэффициенте диффузии - скорости, с которой атомы могут перемещаться в веществе с места на место при их хаотическом движении. Диффузия в  [c.112]


Трение друг о друга двух соприкасающихся твердых тел представляет собой сложное физическое явление, сопровождаемое нагревом трущихся тел, их электризацией, разрушением поверхностей, диффузией вещества и т. д. Явление трения можно себе представить как вдавливание, сопровождающееся сцеплением, бугорков шероховатости (иногда волнистости) поверхности одного нз тел в промежутки между бугорками другого, вызывающее при взаимном движении тел деформацию, а иногда и разрушение этих бугорков. Интенсивность такого рода взаимодействия трущихся поверхностей зависит от многих обстоятельств, среди которых наибольшее значение имеют интенсивность сдавливания тел, характеризуемая нормальной составляющей реакции взаимодействия между телами, скорость их относительного перемещения, степень обработки поверхностей, наличие смазки.  [c.74]

ЗМ Шыо.ион П. Диффузия в твердых телах.— М. Металлургия, 1966,— 196 с.  [c.384]

Реальные кристаллы отличаются от идеализированной модели наличием достаточно многочисленных нарушений регулярного расположения атомов. Любое отклонение от периодической структуры кристалла называют дефектом. Дефекты структуры оказывают существенное, порой определяющее, влияние на свойства твердых тел. Такими структурно-чувствительными, т. е. зависящими от дефектов структуры, свойствами являются электропроводность, фотопроводимость, люминесценция, прочность и пластичность, окраска кристаллов и т. д. Процессы диффузии, роста кристаллов, рекристаллизации и ряд других можно удовлетворительно объяснить исходя из предположения об их зависимости от дефектов. В  [c.84]

Сейчас имеется обширная литература по диффузии в твердых телах, в которой подробно изложены различные аспекты современной теории диффузии, основанной на фундаментальных представлениях физической кинетики й неравновесной термодинамики и связанной с учением о дефектах в кристаллах.  [c.198]

В настоящем разделе мы ограничимся лишь некоторыми вопросами, которые, по нашему мнению, должны дать самое общее представление об одном из важнейших процессов переноса в твердых телах, без знания которых невозможно было бы понять те изменения их свойств, которые имеют место при различных температурных воздействиях. Любой отжиг сопровождается диффузией. Диффузия находит широкое применение как метод легирования твердых тел.  [c.198]

Из-за аналогии характера перемещения вакансий в твердом теле и газе для определения коэффициента диффузии вакансий Db в кристаллах можно воспользоваться формулой кинетической теории газов  [c.201]

Теория Френкеля правильно обосновала температурную зави симость коэффициента диффузии в твердых телах, однако в ней не удалось полностью раскрыть физический смысл параметров диффузии Do и Q. Предэкспоненциальный множитель Do вообще лишен какого-либо смысла, а энергия активизации Q, по-видимому, по смыслу должна быть связана с межатомными силами связи в  [c.202]

Применение теории случайных блужданий к диффузии атомов в твердых телах приводит к уравнениям, аналогичным первому и второму законам Фика. А. Фик для качественного метода расчета диффузии использовал уравнения теплопроводности, выведенные Фурье. При этом он исходил из гипотезы, что в изотропной среде количество / диффундирующего вещества, проходящее за единичное время через единичную площадь поперечного сечения, пропорционально градиенту концентрации С, измеряемому по нормали к этому сечению  [c.204]

Обычно в практике экспериментального исследования процессов диффузии примесей в твердых телах используют решения уравнения второго закона Фика для одномерного случая при определенных для конкретной физической задачи начальных и граничных условиях. Рассмотрим два из наиболее распространенных типа граничных условий и соответствующие им решения.  [c.205]

Коэффициенты диффузии в твердых телах очень малы, много меньше, чем в газах. Так, коэффициент самодиффузии золота при комнатной температуре составляет около 10- = м /с, а для кислорода в атмосфере он равен примерно Ю- м /с.  [c.208]

Для успешного решения все возрастающего числа нерешенных вопросов, связанных с подвижностью атомов, необходимо более широкое изучение процессов диффузии не только в обычных условиях, но также и в условиях, связанных с различными внешними воздействиями — облучение потоками заряженных частиц, наличие внешних электрических и магнитных полей и др. Полученная в процессе такого изучения новая информация окажет неоценимую помощь при решении многих проблем физики твердого тела.  [c.208]

Основным источником информации о коэффициентах диффузии D твердом теле, как и в жидкости, является эксперимент. При этом вследствие крайней чувствительности результатов измерений к степени чистоты исследуемого образца, способу его приготовления и к колебаниям температуры результаты различных измерений обычно характеризуются разбросом в пределах порядка величины. В связи с этим данные, представленные в таблицах, являются результатом усреднения по большому числу экспериментальных данных и в силу произвольного характера усреднения справедливы в лучшем случае по порядку величины.  [c.378]

Температурная зависимость коэффициента диффузии в твердом теле хорошо описывается полуэмпирической  [c.378]


Таблица 17.37. Параметры соотношения (17.13) для коэффициента диффузии газов в твердых телах [1] Таблица 17.37. Параметры соотношения (17.13) для коэффициента диффузии газов в твердых телах [1]
Рассматриваемая задача типа сформулированной в 1,9 (задача 1). Однако здесь будет изучаться только сублимация материала тела без образования слоя кокса и без химических реакций. В данном случае единственная поверхность разрыва (волна сублимации), отделяющая газовый поток от твердого тела, является, естественно, подвижной. Будем изучать стационарный режим уноса массы, когда волна разрыва движется с постоянной скоростью D. Тогда в подвижной системе координат, связанной с волной сублимации (у = у — Dt, у — координата в неподвижной системе), движение в пограничном слое будет установившимся. Течение предполагается ламинарным, описывается оно системой уравнений (1.114). Пусть газовая смесь состоит из двух компонент сублимирующего вещества и однородного основного потока. В этом случае имеет место закон Фика, и уравнение диффузии представляется в простом виде  [c.301]

Диффузия происходит в газах, жидкостях и твердых телах, причем диффундировать могут как растворенные в веществе посторонние частицы, так и частицы самого вещества. Последнее явление называется самодиффузией.  [c.81]

Процесс диффузии так же, как и перенос тепла, обусловлен двумя совершенно различными причинами. Во-первых, при наличии разности концентраций возникает перенос вещества через поверхности, непосредственно соприкасающиеся. Такая диффузия называется молекулярной и наблюдается в твердых телах, а также в покоящихся жидкостях и газах и при их ламинарном движении.  [c.81]

Коэффициент диффузии газа в газе имеет величину порядка 10 м /с, для жидкостей (НС1 и NHg в воде) 10 м /с, для твердых тел он составит м /с.  [c.83]

Теплопроводность представляет собой процесс распространения теплоты при непосредственном соприкосновении отдельных частиц тела, имеющих различные температуры. Этот вид переноса теплоты может происходить в любых телах, но механизм переноса теплоты зависит от агрегатного состояния тела. В жидкостях и твердых телах — диэлектриках — перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит посредством диффузии молекул и атомов, а также за счет обмена энергией при соударении молекул. В металлах распространение теплоты происходит в основном в результате диффузии свободных электронов и упругих колебаний кристаллической решетки, причем последнее имеет второстепенное значение.  [c.89]

Скорость гетерогенных химических реакций существенно зависит от относительного перемещения реагента относительно поверх-ности твердого тела. Процессы диффузии, лимитирующие скорость гетерогенных химических реакций, развиваются в приповерхностном слое при взаимодействии с потоком газа или жидкости. Толщина этого слоя, в свою очередь, зависит от скорости и характера движения потока, содержащего реагент. Так, при движении потока с малыми скоростями (ламинарный режим, Re[c.309]

Для описания процесса диффузии можно использовать совершенно другой подход, связанный с именами Эйнштейна и Смолухов-ского, который пригоден не только для газов, но и для жидкостей и твердых тел.  [c.202]

Способность газов неограпи-че гно расширяться, упругость газов, жидкостей и твердых тел, способность к взаимному проникновению тел путем диффузии можно объяснить, если принять следующие положения молеку-лярно-кинетической теории строения вещества вещество состоит из частиц — атомов и молекул эти частицы хаотически движутся частицы взаимодействуют друг с другом.  [c.70]

Кроме того, разница в свойствах твердого тела и ядадкости проявляется в коэффициенте диффузии - скорости, с которой атомы могут перемешаться в веществе с места на место при их хаотическом движении. Диффузия в жидкостях намного больше, чем в твердых телах. Например, дш меди коэффициент диффузии в твердом состоянии равен 10 см с [17].  [c.40]

Граничные условия для уравнения (59,16) в разных случаях различны. На границе с поверхностью тела, не растворимого в жидкости, должна обращаться в нуль нормальная к поверхности компонента диффузионного потока i = —pDV другими словами, должно быть <3 /dn = 0. Если же речь идет о диффузии от тела, растворяющегося в жидкости, то вблизи его поверхности быстро устанавливается равновесие, при котором концентрация в примыкающей к поверхности тела жидкости равна концентрации насыщенного раствора Со диффузия вещества из этого слоя происходит медленнее, чем процесс растворения. Поэтому граничиое условие на такой поверхности гласит с = q. Наконец, если твердая поверхность поглощает попадающее на нее диффундирующее вещество, то граничным условием является равенство с = 0 (с таким случаем приходится, например, иметь дело при изучении химических реакций, происходящих на поверхности твердого тела).  [c.327]

К настояще]иу времени издан ряд книг по физике твердого тела как советских, так и зарубежных авторов. Каждая из них хороша по-своему. Большинство изданий, однако, могут служить учебпымн пособиями либо лишь по разделу Физика твердого тела в курсе общей физики, либо по соответствующему спецкурсу во втузах. В связи с такой направленностью учебных пособий в них недостаточно полно отражено современное состояние физики твердого тела. К наиболее удачным пособиям следует отнести книги Н. Ашкрофта и Н. Мермина Физика твердого тела (М., 1979) и Ч, Кит-теля Введение в физику твердого тела (М., 1978), в которых, правда, главное внимание уделено теории твердого тела. Однако в них, так же как и в большинстве других книг, недостаточное внимание обращено на такие важные разделы, как физика некристаллических веществ, дефекты и диффузия в твердых телах, вязкое и хрупкое разрушения твердых тел. Кроме того, различие в планах и программах подготовки специалистов в зарубежных (а эти книги изданы как учебные пособия для американских вузов) и наших вузов не позволяет в полной мере использовать данные учебные пособия.  [c.6]

Процесс перескока атомов из одного регулярного цоложения равновесия в другое Френкель назвал диффузией дырок, или свободных мест, в решетке. Оба процесса — перемещение вакантных мест (дырок) и движение атомов в межатомном пространстве, т. е. движение диссоциированных атомов — осуществляют диффузию в твердом теле.  [c.199]

Параметры диффузии, определяемые обычно при высокотемпературных измерениях, имеют важное значение для понимания разнообразных процессов, протекаюших в твердых телах, поскольку они позволяют судить о подвижностп атомов и дефектов кристаллической решетки.  [c.208]


Система, состоящая из капель или пузырьков (ламинарный режим). Перенос массы в каплях или пузырях имеет большое практическое значение в самых разнообразных процессах. Это связано с тем, что в каплях или пузырях, так же как и в пленке жидкости при пленочном течении, подвижная поверхность раздела фаз способствует значительной интенсификации массообмена. Конвективная диффузия па подвижной поверхности контакта фаз протекает в более благоприятных условиях, чем на поверхности раздела жидкость - твердое тело. Этим обусловливается широкое использование элементарных актов переноса массы через поверхность раздела капель или пузырей в различных промышленных процессах процесс экстрагирования из жидкой фазы проводится из капель, процессы абсорбции, хемосорбции, ректификации и з .д. проводятся в колонных аппаратах в интенсивньзх режимах взаимодействия контактирусмых фаз, представляющие собою систему капель или пузырей. Ьолыпая част ь работ посвящена исследованию конвективной диффузии в стационарных условиях [38]. В интенсивных режимах, в которых член, ответственный за нестационарность, соизмерим с конвективным членом, необходимо решать полные уравнения нестационарной диффузии.  [c.32]

Характер теплового движения молекул в жидкостях сложнее, чем в твердых телах. Согласно упрощенной, но, по-видимому, качественно верной модели, тепловые движения молекул жидкости представляют нерегулярные колебания относительно некоторых центров. Кинетическая энергия колебаний отдельных молекул в какие-то моменты может оказаться достаточной для иреодоления межмолекулярных связей. Тогда эти молекулы получают возможность скачком перейти в окружение других молекул, тем самым поменяв центр колебаний. Таким образом, каждая молекула некоторое время называемое временш оседлой жизни , находится в упорядоченном строю с несколькими ближайшими соседками . Совершив перескок, молекула жидкости оказывается среди новых молекул, выстроенных уже другим образом. Поэтому в жидкости наблюдается только ближний порядок в расположении молекул. Скачки молекул совершаются хаотически, новое место никак не предопределено прежним. Непрерывно и в большом количестве совершающиеся скачкообразные переходы молекул с места на место обеспечивают диффузию молекул и текучесть жидкостей. Если на границе жидкости приложена сдвигающая сила, то, как и в газах, появляется преимущественная направленность скачков и возникает течение жидкости в направлении силы.  [c.11]

Рассмотрим также уравнение теплопроводности в твердых телах. Это уравнение можно получить, как частный случай уравнения энергии движущейся среды (1.41). Полагая среду неподвижной, нетрудно видеть, что Ф = 0 в этом случае величину dh/dt следует заменить величиной с dTldt, где с — удельная теплоемкость твердого тела. Полагая, что диффузия отсутствует (Ji = О, grad i = 0), и опуская члены Q и dpidt, можно получить уравнение энергии (теплопроводности) для твердого тела с изотропной теплопроводностью  [c.24]

Диффузия в жидкостях идет значительно медленнее, чем в газах. Ди( узия в твердых телах протекает особенно медленно. Например, если сложить и сильно сжать два куска различных металлов (медь и цинк или олово и свинец), то процесс взаимной диффузии при комнатной температуре продолжается месяцы и годы. При температуре 100—200° С уже через год в месте контакта меди и цинка образуется слой твердого сплава толщиной в 0,25 мм. При этом куски металла вследствие диффузии оказываются спаянными.  [c.83]

Приближение диффузии излучения сираведливо для оптически толстых сред (большой коэффициент поглощения) при небольших градиентах температуры. Эти условия не всегда соблюдаются на границах, например, твердое тело —вакуум с температурой абсо-  [c.293]

Изотропным излучением называют такое, интенсивность которого одинакова по всем направлениям, а с поверхности твердого тела такое излучение называется идеально диффуз-Н Ы м.  [c.402]

Приближение диффузии излучения справедливо для оптически толстых сред (большой К0эфс 5ициент поглош,ения) при небольших градиентах температуры. Эти условия не всегда соблюдаются на границах, например твердого тела и вакуума, с температурой абсолютного нуля. Однако и в таких случаях можно использовать приближение ди( х )узии излучения путем введения понятия скачка на границе. Спектр излучения газов полосчатый. Приближение ди( х )узии излучения справедливо для таких полос спектра, которым соответствует оптическая толщина среды, большая 2.  [c.421]


Смотреть страницы где упоминается термин ДИФФУЗИЯВ ТВЕРДЫХ ТЕЛАХ : [c.209]    [c.208]    [c.113]    [c.198]    [c.202]    [c.193]   
Смотреть главы в:

Строение и свойства металлических сплавов  -> ДИФФУЗИЯВ ТВЕРДЫХ ТЕЛАХ



ПОИСК



Возможные механизмы диффузии в твердых телах

Диффузия

Диффузия в твердых телах

Твердое диффузия

Трансляционная диффузия в твердых телах



© 2025 Mash-xxl.info Реклама на сайте