Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновые явления при ударе

ВОЛНОВЫЕ ЯВЛЕНИЯ ПРИ УДАРЕ  [c.312]

На характер явления гидравлического удара оказывают большое влияние сжимаемость жидкости и деформируемость стенок трубопровода, т. е. способность стенок трубопровода соответствующим образом деформироваться с изменением гидромеханического давления в трубе. Благодаря этим обстоятельствам в трубопроводе при закрытии или открытии крана К получается упругий удар, качественно отличающийся от абсолютно жесткого удара. В случае упругого удара давление вдоль трубопровода распространяется волнами, причем эти волновые явления оказываются весьма резко выраженными, и с ними нельзя не считаться при изучении гидравлического удара.  [c.356]


Подробный анализ явления гидравлического удара можно сделать при помощи волнового уравнения, которое можно получить из уравнения движения идеальной жидкости в форме Эйлера,  [c.120]

В современной литературе [2, 5, 6, 18] при исследовании соударения тел обычно полагают, что отраженными волновыми процессами можно пренебречь, если размеры тела таковы, что полная длительность удара больше (в 5-10 раз) времени пробега упругой волны, или, наоборот, размеры настолько большие, что отраженная волна не успеет вернуться за время удара. На примере продольного удара тела по стержню конечной длины можно проверить обоснованность этих предположений и исследовать, как влияют волновые явления на процесс удара в случае, когда ими пренебрегать нельзя.  [c.530]

Заметим, что явления распространения ударных волн в трубе могут возникать не только при регулировании потока затвором, но также при нестационарных режимах работы различных регулирующих органов (например, при возвратно-поступательном движении поршня в цилиндре, к которому присоединен трубопровод). Такие волновые процессы обычно не называют гидравлическим ударом, хотя они имеют ту же физическую природу и их математическое описание основывается на уравнениях гидравлического удара.  [c.194]

Влияние волновых процессов важно при высоких скоростях нагружения, например, при механических и тепловых ударах. В этих случаях напряженное и деформированное состояния и их изменение во времени определяются распространением, отражением и взаимодействием волн, и потому могут наблюдаться принципиальные отличия от статических состояний. Например, у составных тел из материалов разной плотности и при одинаковых модулях упругие статические деформации не будут отличаться от деформаций сплошных тел. В то же время отражение волн от границ между материалами может существенно изменить деформированное состояние. Необходимость учета волновых процессов тем важнее, чем больше протяженность тела и связанный с этим путь волны. Если при столкновении тела мало деформируются, то контактные явления незначительны. Тогда в зоне столкновения деформации невелики и главную роль играют волновые процессы. Скорость волн растет с увеличением модулей упругости (пропорционально ]/ Е или О). Поэтому у материалов с высокими модулями упругости и малым удельным весом (например, у бериллия) скорости упругих деформаций и обычно связанные с ними скорости хрупкого разрушения выше, чем у материалов с высокими удельными весами и малыми модулями упругости (например, у свинца).  [c.227]

Ограниченность объема книги не позволила коснуться некоторых важных явлений. К числу их относятся волновые процессы, колебания и потеря устойчивости при ударе, удар при работе материала в упруго-пластической области, неустановив-шиеся процессы. Не затронуты в книге и некоторые важные методы. Здесь в первую очередь следует отметить качественные методы и методы, в которых используется аппарат интегральных уравнений.  [c.5]

Энергетические и угловые характеристики комптоновского рассеяния полно стью определяются законами сохранения энергии и импульса для упругого удара. Поскольку при ударе энергия фотона уменьшается, длина волны излучения увеличивается. Это явление не может быть объяснено классической волновой теорией света. Обнаружение комптоновского рассеяния явилось одним из важнейших подтверждений квантовой теории и корпускулярных свойств гсвета.  [c.148]


Рассматриваются задачи о продольных нестационарных колебаниях вязкоупругого стержня конечной длины, удар вязко-упругого стержня о жесткую преграду и распространение волн напряжений в полубесконечном вязкоупругом стержне. В качестве модели, описывающей вязкоупругие свойства материала стержня, используется обобщенная модель стандартного линейного тела, содержащая дробные производные различных порядков. Задачи решаются методом преобразования Лапласа, при этом в отличие от традиционных численных подходов характеристическое уравнение не рационализируется, а решается непосредственно с дробными степенями. Проведено численное исследование указанных задач. Временные зависимости напряжения и контактного напряжения в стержне, соответствующие первой и второй задачам, проанализированы для различных значений реологических параметров порядков дробных производных и времени релаксации. Исследования показали, что стержень не прилипает к стенке ни при каких значениях реологических параметров. В задаче о распространении волн напряжений получены асимптотические решения вблизи волнового фронта и при малых значениях времени. Показано, что данная модель может описывать как диффузионные, так и волновые явления, протекающие в вязкоупругих материалах. Все зависит от соотношения порядков производных, стоящих слева и справа в реологическом уравнении.  [c.281]

Пример продольного удара представлен на рис. 245, где груа С падает на заплечики стержня с высоты /г. Вследствие большой скорости приложения ударной нагрузки процесс деформирования стержня при этой нагрузке должен существенно отличаться от того, какой мы имеем при статическом ее приложении. В самом деле, известно, что упругая деформация распространяется в теле со скоростью, равной скорости распространения в нем звука. Скорость эта очень велика, тогда как скорость приложения статической нагрузки, а следовательно, и скорость возрастания деформаций стержня малы. Поэтому к моменту, когда статическая нагрузка достигнет своей окончательной величины, деформация успевает распространиться на всю длину стержня. При ударной нагрузке, если длина стержня не очень мала, за очень короткое время удара деформации распространяются лишь на некоторую часть длины стержня. Таким образом, действие ударной нагрузки концентрируется лишь на некотором участке длины стержня, вследствие чего деформации оказываются большими, чем при статической нагрузке. После окончания приложения ударной нагрузки эти деформации распространяются на следующий участок длины стержня, в то время как на первом участке они убывают до величин статических деформаций, и т. д. В результате мы получаем волновой харак тер распространения деформаций, а следовательно, и напряжений по длине стержня, причем волны деформаций и напряжений, достигнув защемленного конца, отражаются от него, создавая деформации и напряжения обратного знака. Эти явления еще осложняются тем, что при распространении деформации по длине стержня силы инерции масс частей стержня оказываются различными. Еще большие осложнения вносит пластическая деформация, если она происходит, так как скорость ее распространения, в отличие от упругой деформации, не постоянна, а изменяется с изменением соответствующего ей напряжения. Таким образом, напряженно-деформированное состояние стержня при ударном приложении нагрузки оказывается весьма сложным, причем продольный удар сопровождается всегда продоль-  [c.432]

Известно, что при акустической кавитации основная механическая работа совершается ударными волнами, возникающими при захлопывании кавитационных полостей. Образование ударных волн происходит с частотой, равной частоте возбуждающих акустических колебаний. Диспергирование жидкости под действием образующихся таким образом периодических ударных волн может происходить двумя способами прямым и косвенным. В прямом способе сравнительно крупные капли-брызги образуются при встрече ударного фонтана с границей раздела жидкость-газ. Именно этот механизм имел в виду Зольнер, когда предлагал кавитационную гипотезу акустического распыления жидкости. В соответствии с кавитационно-волновой гипотезой, предложенной Богуславским и Экнадиосянцем, образование высокодисперсного аэрозоля, характерного для акустического распыления жидкости, происходит косвенным способом. Периодические гидравлические удары кавитационных пузырьков приводят к параметрическому возбуждению на поверхности жидкости стоячих капиллярных волн конечной амплитуды. Капли аэрозоля образуются из гребней этих волн так, как это описывается капиллярно-волновой гипотезой. С помощью этой гипотезы можно объяснить широкий круг наблюденных закономерностей и явлений, характерных для распыления жидкости в ультразвуковом фонтане.  [c.378]


Смотреть страницы где упоминается термин Волновые явления при ударе : [c.644]    [c.163]    [c.159]    [c.4]    [c.367]   
Смотреть главы в:

Основы прикладной теории колебаний и удара Изд.3  -> Волновые явления при ударе



ПОИСК



Явление

Явление удара



© 2025 Mash-xxl.info Реклама на сайте