Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства типичных материалов

Свойства типичных материалов  [c.134]

При использовании любых упрощенных, идеализированных схем и понятий надо, однако, иметь в виду, что обнаруживаемые в результате анализа эффекты лишь приближенно и схематично отражают истинные реальные явления. Это полностью, конечно, относится и к нашим задачам. Обнаруженная в наших рассуждениях полная утрата геометрической неизменяемости и потеря несущей способности есть следствие принятой схемы идеального упруго-пластичного материала. В действительности приближение к пределу текучести будет сопровождаться резким (хотя и не стопроцентным) падением жесткости конструкции. Наши рассуждения представили это свойство реальной конструкции в крайнем, можно сказать, заостренном виде. Такое заострение действительных свойств типично для многих теорий сопротивления материалов вы уже с ними встречались на предыдущих лекциях и не раз встретитесь в последующих. Впрочем, это относится не только к нашей дисциплине, но и ко всем тем, где используются упрощенные, схематизированные модели, например к гидродинамике и аэродинамике.  [c.140]


Материалы класса V, содержащие титанат бария, являющийся типичным сегнетоэлектриком, отличаются зависимостью диэлектрической проницаемости от напряженности электрического поля, а некоторые группы (с особо высоким значением е,) — большой зависимостью от температуры с максимумом при температуре точки Кюри. Чем больше содержит керамика титаната бария, тем сильней проявляются сегнетоэлектрические свойства. Свойства керамических материалов типа Б представлены на рис. 3-75.  [c.240]

Упругие свойства композиционных материалов, изготовленных на основе нитевидных кристаллов, так же как и свойства материалов на основе непрерывных волокон, линейно зависят от их объемного содержания. Это иллюстрируют типичные зависимости изменения модуля упругости материалов с хаотическим распределением нитевидных кристаллов в плоскости ху от их объемного содержания ркр (рис. 7.3). Данные получены на композиционных материалах, изготовленных на основе нитевидных кристаллов A1N и ТЮа- На каждую точку испытано по шесть образцов. Коэффициент вариации значений модуля упругости для обоих типов материалов не превышал 6 %. Экспериментальные значения модуля упругости хорошо согласуются с его расчетными значениями, вычисленными по формулам (7.2)— (7.9). Хорошее совпадение опытных и расчетных значений наблюдается также и для других упругих характеристик.  [c.206]

Очевидно, ни один из металлов в чистом виде не годится в качестве материала для электрических контактов. Разработанные для контактов сплавы, такие, как серебро — медь, серебро — кадмий и др., имеют по сравнению с металлами повышенную прочность и твердость, поверхность их не тускнеет, но их электро- и теплопроводность значительно ниже. Для получения требуемых характеристик контактов в сильноточных цепях разрабатываются композиционные материалы, которые сочетают высокую электро- и теплопроводность с высокими температурами плавления и кипения, или обладают ни.зкой смачиваемостью и низкими фрикционными свойствами, и т д. Свойства типичных композиционных материа-  [c.418]

СВОЙСТВА ТИПИЧНЫХ композиционных МАТЕРИАЛОВ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ, РАБОТАЮЩИХ В УСЛОВИЯХ СИЛЬНОТОЧНЫХ ЭЛЕКТРИЧЕСКИХ ДУГ  [c.419]

СВОЙСТВА ТИПИЧНЫХ композиционных МАТЕРИАЛОВ,  [c.420]

ТИПИЧНЫЕ МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ АЛЮМИНИЙ - БОР . СОДЕРЖАНИЕ БОРА -SO об. %  [c.205]

Типичные свойства пленочных материалов на основе полиформальдегида и поликарбоната  [c.129]

Эта сложность требований, предъявляемых к современным материалам, вообще делает невозможной использование традиционных металлических сплавов, совершенствование которых неспособно обеспечить принципиальное и резкое повышение эксплуатационных характеристик при высоких и низких температурах, в условиях сильных ударных, знакопеременных нагрузок, тепловых ударов, действия облучения, высоких скоростей. Отсюда основным направлением современного материаловедения является создание композиционных, сложных материалов, компоненты которых вносят в них те или иные требуемые свойства. Типичным примером являются композиционные жаропрочные сплавы, состоящие из достаточно пластичной основы (матрицы), упрочненной непластичными тугоплавкими составляющими в форме волокон, нитевидных кристаллов, тонких включений либо поверхностно упрочненной покрытиями. Практическое создание таких сложных материалов обычно невозможно традиционными методами сплавления с последую-, щим литьем и механической обработкой, так как входящие в их состав компоненты плохо совместимы, имеют не только разные температуры плавления, но и вообще различную природу. Это вызывает необходимость использования методов порошковой металлургии, заключающейся в смешении разнородных и разнотипных материалов в форме порошков, прессовании из смесей заготовок нужных форм и спекания этих заготовок для их упрочнения и формирования требуемой структуры.  [c.77]


Поведение и типичные свойства демпфирующих материалов  [c.105]

В предыдущей главе было показано, что динамические свойства линейных резиноподобных материалов можно представить с помощью любых двух из следующих трех параметров накопленного модуля, модуля поглощения и коэффициента потерь. Для задач, рассматриваемых в данной главе, при описании демпфирующих свойств материалов потребуются только накопленный модуль и коэффициент потерь. Демпфирующие свойства резиноподобных материалов зависят от технологического оборудования. Например, на рис. 3.1 показана температурная зависимость динамических перемещений при соответствующих частотах колебаний для типичной металлической жестко защемленной на одном конце и свободной на другом балки, на которую нанесен демпфирующий слой. Исследуя зависимости от температуры, можно обнаружить области, где материал проявляет хорошие демпфирующие свойства. В то же время, изучая частотную зависимость, можно видеть четыре первых формы колебаний балки. Из рис. 3.1 с очевидностью следует, что характер поведения балки для соответствующих форм колебаний  [c.105]

СВОЙСТВА ТИПИЧНЫХ ДЕМПФИРУЮЩИХ МАТЕРИАЛОВ  [c.130]

Клапаны могут быть изготовлены либо отливкой в песчаные формы по технологии, описанной для корпусов турбин, либо сваркой нескольких штамповок. Технология штамповки в матрицах похожа в принципе на экструзию и позволяет получать заготовки с минимальным припуском на механическую обработку. Технику использования для этих целей 30 000-тонного пресса иллюстрирует рис. 7.2. Использование этого процесса дает существенную экономию по сравнению со штамповкой с последующей механической обработкой, лучшую структуру и свойства. Типичные характеристики материалов приведены в табл. 7.1.  [c.68]

К обычным литейным суперсплавам на Ni основе с большим успехом применили метод направленной кристаллизации (см. гл. 7). Было изучено [28] влияние такого технологического приема на микроструктуру и свойства типичных кобальтовых сплавов Х-40, WI-52 и ММ-509. В экспериментальных условиях, которые при скорости перемещения траверзы от 3 до 30 см/ч обеспечивали рост столбчатых дендритов, в сплаве обнаруживали фазы, свойственные материалу с равноосной микроструктурой. С увеличением скорости перемещения траверзы структура становилась тоньше, что приводило к существенному росту кратковременной пластичности при растяжении и длительной пластичности у всех трех сплавов. Из прочностных характеристик такая кристаллизация улучшала только длительную прочность у сплава Х-40 и сопротивление термической усталости у сплавов Х-40 и ММ-509.  [c.201]

Выполнение систематических исследований напряженно-деформированного состояния широкого круга различных элементов конструкций для типичных условий эксплуатации и обобщение получаемых данных с определением характера влияния основных факторов (поля температур и напряжений, механические свойства конструкционных материалов) является очередной задачей.  [c.231]

Теоретические аппроксимации для расчета основных свойств композиционных материалов могут быть использованы для эскизного проектирования и получения представлений о поведении материала. Можно также найти корреляцию между теоретически рассчитанными и эмпирическими значениями. Табл. 16.13 [22] является типичной распечаткой ЭВМ, где представлены свойства композитов в зависимости от угла намотки а. Все четыре материала содержат 50 % волокна по объему.  [c.229]

Преимуществом боралюминия по сравнению с полимерными композиционными материалами является более высокая прочность в направлениях, отличных от направления укладки волокон. Прочность боралюминия в поперечном направлении и прочность при сдвиге может быть равна прочности алюминия или сплавов на его основе и значительно превышать прочность, достигаемую в материалах с полимерной матрицей. Типичные прочностные свойства этих материалов приведены в табл. 1.  [c.423]

Упругость, модуль упругости, пластичность, закон разгрузки и закон упрочнения. При проведении опытов с растяжением образцов выявляются общие свойства конструкционных материалов — свойства упругости и пластичности. На рис. 4.2 показаны типичные результаты опытов на растяжение. Если напряженио ст не превышает определенной величины — предела упругости Оу, то зависимость между напряжением а и деформацией е оказывается линейной  [c.71]

Так, выявлены закономерности, оценивающие типичные процессы коррозии -как функции времени [63], делаются попытки оценить скорость развития усталостных трещин [164], получены данные для оценки протекания процессов ползучести 1111], имеются закономерности, описывающие изменения свойств масел в процессе их эксплуатации [211], изменения коэффициента трения при работе сопряжения, коробление отливок от остаточ ных напряжений, изменение во времени свойств полимерных материалов [200] и др.  [c.65]

Особенности структурных свойств композиционных материалов на основе углеродных и борных волокон с традиционными схемами армирования исследованы в работах [20, 25, 33, 59, 70]. Анализ и сопоставление полученных данных по угле- и боро-пластикам с аналогичными данными типичных стеклопластиков [39, 71] свидетельствуют о том, что использование высокомодульных волокон при традиционных схемах армирования способствует лишь резкому увеличению жесткости материала в направлениях армирования при этом заметного возрастания других упругих и прочностных характеристик не происходит. Главной отличительной особенностью высокомодульных композиционных материалов является большая по сравнению со стеклопластиками анизотропия упругих свойств [25]. Для углепластиков увеличение анизотропии упругих свойств обусловлено также анизотропией самих армирующих волокон. Существенных различий по прочностной анизотропии между стеклопластиками и высокомодульными материалами нет, но абсолютные значения межслойной сдвиговой прочности и прочности на отрыв в трансверсальном направлении однонаправленных и ортогонально-армированных углепластиков в 1,5—3 раза ниже аналогичных характеристик стеклопластиков.  [c.7]


Наряду с неоднородностью, обусловленной тем, что процесс естественного или искусственного старения в упругоползучем теле протекает неодинаково во всех его элементах, в реальных конструкциях и телах встречается также и другой вид неоднородности. Эта неоднородность характеризуется тем, что элементы таких тел и конструкций изготовлены из разных материалов с различными упругими и реологическими свойствами. Типичными представителями таких неоднородных тел являются кусочнооднородные упругоползучие тела. Для таких тел упругие и реологические характеристики зависят от координат [38, 39]  [c.16]

Описание структурной модели. Результаты представленных в 2.1 экспериментальных исследований, а также приведенные в п. 2.2.1 представления о неравновесных границах зерен являются базисом для разработки структурной модели наноструктурных материалов, полученных ИПД [12, 150, 207]. Предметом этой модели является описание дефектной структуры (типов дефектов, их плотности, распределения) атомно-кристаллического строения наноструктурных материалов, а задачей — объяснение необычных структурных особенностей, наблюдаемых экспериментально высоких внутренних напряжений, искажений и дилатаций кристаллической решетки, разупорядочения наноструктурных интерме-таллидов, образования пересыщенных твердых растворов в сплавах, большой запасенной энергии и других. На этой основе становится возможным объяснение, а также предсказание уникальных свойств наноструктурных материалов (гл. 4 и 5). Вместе с тем, как было показано выше, типичные наноструктуры в сплавах, подвергнутых ИПД, весьма сложны. Более простым является пример чистых металлов, где основным элементом наноструктуры выступают неравновесные границы зерен. Структурная модель металлов, подвергнутых ИПД, может быть представлена следующим образом.  [c.99]

ПО теплопроводности различных Сандвичевых структур. Теплопроводность Сандвичевых панелей складывается из теплоизоляционных свойств каждого из компонентов пластин, заполнителя и связующего. Тепловое сопротивление R (величина, обратная теплопроводности) является суммой сопротивлений всех трех компонентов (включая эффекты на границах раздела). Типичные свойства несущих материалов приведены в соответствующих справочниках. Термическое сопротивление адгезионного слоя составляет 0,03 внутри материала и 0,01 на поверхности. На графиках (рис. 21,4) приведены значения теплосопротивлений сотовых структур при температуре 24 °С. Показано, что для неметаллических сотовых структур влияние размера ячейки более существенно, чем плотность наполнителя. Для алюминиевой ячейки — наоборот. Поправочный температурный коэффициент К (Ь) приведен для неметаллов (J) и для алюминия (2) в зависимости от  [c.340]

Ограничение по толщине позволяет исключить из рассмотрения в данной главе наполненные лакокрасочные материалы и клеи, хотя, в принципе, их можно отнести к полимерным композиционным материалам. Никаких ограничений на природу или форму второй фазы (наполнителя) не накладывается. Наполнители могут использоваться в виде волокон, чешуек, порошков, пористых твердых тел или в газообразном состоянии. В качестве наполнителей могут применяться самые различные материалы — от стеклянных волокон до частиц кокса и от латексов каучука до песка. Необходимо было бы установить ограничения на минимальные размеры частиц второй фазы, однако это довольно трудно сделать. Так, резины, содержащие частицы сажи, и эластифициро-ванные стеклообразные термопласты — частицы эластичной фазы, имеющие размеры в интервале от 10 до 500 нм и резко изменяющие свойства этих материалов, относятся к композиционным материалам. С другой стороны, полимерные материалы, содержащие небольшое количество пигментов с размерами частиц порядка 0,3 —10 мкм или наполнителей, вводимых для изменения текучести или отражательной способности полимеров и имеющих размеры частиц порядка 10—30 мкм, не относятся к композиционным материалам, несмотря на их типично двухфазную природу. Полимеры, содержащие красители, также не относятся к композиционным материалам, так как в большинстве случаев красители диспергируются на молекулярном уровне.  [c.364]

Смеси полимеров или сополимеров. Типичными материалами этого класса являются АБС-пластики — смеси тройных сополимеров акрилонитрила, бутадиена и стирола, получаемые различными методами. Их свойства варьируются в широких пределах в зависимости от состава и способа получения. АБС-пластики отличаются высокой ударной вязкостью, стойкостью к растрескиванию и химстойкостью, однако не выдерживают воздействия метилэтил-кетона и некоторых других растворителей, в частности эфиров. Часто их путают с ударопрочными полистиролами (УПС), обладающими аналогичными свойствами. УПС подробнее будут рассмотрены ниже.  [c.455]

В табл. 8 обобщены сравнительные данные для композицион-пых материалов, изготовленных с применением основных армирующих волокон. Прочность и жесткость оценены по сравнению со свойствами типичного титанового сплава Ti—6% А1—4% V. В ряде случаев они сравнены с перспективными свойствами, дости-н ение которых предполагается, если будут преодолены производственные трудности. Высокотемпературная удельная прочность относится к 600—1200° F (316—649 С), к этому же температурному интервалу относится характеристика стабильности. Четыре последних армирующих материала — бор и бор, покрытый карбидом кремния, карбид кремния и окись алюминия — располагаются в порядке возрастания плотности и снижения прочности. Однако потенциальная прочность при комнатной температуре у композиционных материалов, изготовленных из первых трех видов волокна, примерно одинакова и оценена одинаковым показателем. Значительно более высокая плотность окиси алюминия (4 г/см ) отрицательно влияет на потенциальную прочность и нсесткость композиционных материалов, изготовленных с этим армирующим волокном.  [c.330]


Смотреть страницы где упоминается термин Свойства типичных материалов : [c.207]    [c.104]    [c.107]    [c.111]    [c.106]    [c.21]    [c.239]   
Смотреть главы в:

Демпфирование колебаний  -> Свойства типичных материалов



ПОИСК



Свойства материалов

Типичное свойство



© 2025 Mash-xxl.info Реклама на сайте